1
|
New Molecular-Based Phylogeny of Mussel-Associated Mites Reveals a New Subgenus and Three New Species Representing an Example of a Host-Driven Radiation in Indochina and Confirms the Concept of Division of the Genus Unionicola Haldeman, 1842 (Acari: Unionicolidae) into Numerous Subgenera. DIVERSITY 2022. [DOI: 10.3390/d14100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Here we describe a new subgenus and three new species of parasitic water mites in the genus Unionicola (Acari: Hydrachnidia) from Myanmar: Myanmaratax subgen. nov., Unionicola (Myanmaratax) savadiensis subgen. and sp. nov. (hosts: Lamellidens savadiensis and L. generosus), U. (My.) generosa sp. nov. (the same hosts), and U. (My.) trapezidenssp. nov. (hosts: Trapezidens dolichorhynchus and T. angustior). These taxa were identified based on a two-gene phylogenetic analysis (COI + 28S), which also confirms the division of the genus Unionicola into numerous subgenera. The new species are cryptic species, which are morphologically indistinguishable but strongly resemble U. (Prasadatax) brandti Vidrine, 1985 described from Thailand (hosts: Lens spp. and Ensidens spp.). We also transfer the latter taxon from Prasadatax to Myanmaratax based on a set of morphological evidence and propose U. (My.) brandti comb. nov. The new subgenus contains a total of five species, one of which needs future sampling efforts and will be described elsewhere. Additionally, 56 valid subgenera, which were placed in the synonymy of the genus and in one case raised to the genus level, are restored here until robust phylogenetic evidence on their taxonomic status is available. Our results also confirm that Unionicola mites are narrow host specialists that are associated with either one or a few closely related freshwater mussel species belonging to one or two sister genera.
Collapse
|
2
|
Peláez ML, Horreo JL, García-Jiménez R, Valdecasas AG. An evaluation of errors in the mitochondrial COI sequences of Hydrachnidia (Acari, Parasitengona) in public databases. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:371-384. [PMID: 35212872 PMCID: PMC11602793 DOI: 10.1007/s10493-022-00703-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Public molecular databases are fundamental tools for modern taxonomic studies whose usefulness rely on the soundness of the data within them. Here, we study potential errors that can arise along the data pipeline from sampling, specimen identification and molecular processing (digestion, amplification and sequencing) to the submission of sequences to these databases by using the DNA sequences of Hydrachnidia (Acari, Parasitengona) as a case study. Our results indicate that molecular information is available for only about 3% of the Hydrachnidia species known to date; yet, within this small percentage, errors are present in almost 5% of the species analyzed (0.5% of the sequences and almost 11% of the genera). This study underscores the scarcity of genetic data available for Hydrachnidia, but also that the proportion of errors in DNA sequences is relatively small. Even so, it highlights the danger associated with using DNA sequences from public databases, particularly for species identification, and reinforces the need for greater quality control measures and/or protocols to avoid an intensification of errors in the (post) genomics era. Finally, our study emphasizes that potential errors may also reveal cryptic diversity within a species.
Collapse
Affiliation(s)
- María L Peláez
- Museo Nacional de Ciencias Naturales, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain.
| | - José L Horreo
- UMIB Research Unit of Biodiversity (UO, CSIC, PA), Oviedo University - Campus Mieres, C/Gonzalo Gutiérrez Quirós s/n, 33600, Mieres, Spain
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, C/Jose Antonio Novais 12, 28040, Madrid, Spain
| | | | - Antonio G Valdecasas
- Museo Nacional de Ciencias Naturales, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| |
Collapse
|
3
|
Pešić V, Zawal A, Manović A, Bańkowska A, Jovanović M. A DNA barcode library for the water mites of Montenegro. Biodivers Data J 2021; 9:e78311. [PMID: 34966245 PMCID: PMC8712502 DOI: 10.3897/bdj.9.e78311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
Water mites (Acari, Hydrachnidia) are a significant component of freshwater ecosystems inhabiting a wide range of aquatic habitats. This study provides a first comprehensive DNA barcode library for the water mites of Montenegro. DNA barcodes were analysed from 233 specimens of water mites morphologically assigned to 86 species from 28 genera and 15 families. In the course of the study, four species, i.e. Lebertiareticulata (Koenike, 1919), Atractidesinflatipalpis K.Viets, 1950, A.latipes (Szalay, 1935) and Parabrachypodamontii (Maglio, 1924) were molecularly confirmed as new for Montenegro and three species, i.e. Protziaoctopora Lundblad, 1954, Pionalaminata (Thor, 1901) and Unionicolaypsilophora (Bonz, 1783) are new for the Balkan Peninsula. Results are analysed using the Barcode Index Number system (BIN) and the Refined Single Linkage (RESL) of BOLD. The BIN assigned sequences to 98 clusters, while the RESL reveal 103 operational taxonomic units (OTUs). Unique BINs were revealed for 72 species (83.7%), whereas twelve species (14%) were characterised by two BINs and two species (2.3%) with three BINs. Amongst the studied taxa, 14 species were found with a high intraspecific sequence divergences (˃ 2.2%), emphasising the need for additional comprehensive morphological and molecu-lar analysis of these species.
Collapse
Affiliation(s)
- Vladimir Pešić
- Department of Biology, University of Montenegro, Podgorica, Montenegro Department of Biology, University of Montenegro Podgorica Montenegro
| | - Andrzej Zawal
- Institute of Marine and Environmental Sciences, Center of Molecular Biology and Biotechnology, University of Szczecin, Szczecin, Poland Institute of Marine and Environmental Sciences, Center of Molecular Biology and Biotechnology, University of Szczecin Szczecin Poland
| | - Ana Manović
- Department of Biology, University of Montenegro, Podgorica, Montenegro Department of Biology, University of Montenegro Podgorica Montenegro
| | - Aleksandra Bańkowska
- Institute of Biology, University of Szczecin, Szczecin, Poland Institute of Biology, University of Szczecin Szczecin Poland
| | - Milica Jovanović
- Department of Biology, University of Montenegro, Podgorica, Montenegro Department of Biology, University of Montenegro Podgorica Montenegro
| |
Collapse
|
4
|
Chapurina YE, Bolotov IN, Vidrine MF, Vikhrev IV, Lunn Z, Chan N, Win T, Bespalaya YV, Aksenova OV, Gofarov MY, Kondakov AV, Konopleva ES. Taxonomic richness and host range of tropical Asian mussel‐associated mite assemblages (Acari: Unionicolidae) with a description of a new subgenus and species of parasitic mite from freshwater pearl mussels (Unionida: Margaritiferidae). J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yulia E. Chapurina
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences Arkhangelsk Russia
- Northern Arctic Federal University Arkhangelsk Russia
| | - Ivan N. Bolotov
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences Arkhangelsk Russia
- Northern Arctic Federal University Arkhangelsk Russia
| | | | - Ilya V. Vikhrev
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences Arkhangelsk Russia
- Northern Arctic Federal University Arkhangelsk Russia
| | - Zau Lunn
- Fauna & Flora International –Myanmar Programme Yangon Myanmar
- Biology Department University of New Brunswick Saint John NB Canada
| | - Nyein Chan
- Fauna & Flora International –Myanmar Programme Yangon Myanmar
| | - Than Win
- Department of Zoology Dawei University Dawei Myanmar
| | - Yulia V. Bespalaya
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences Arkhangelsk Russia
- Northern Arctic Federal University Arkhangelsk Russia
| | - Olga V. Aksenova
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences Arkhangelsk Russia
- Northern Arctic Federal University Arkhangelsk Russia
| | - Mikhail Y. Gofarov
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences Arkhangelsk Russia
- Northern Arctic Federal University Arkhangelsk Russia
| | - Alexander V. Kondakov
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences Arkhangelsk Russia
- Northern Arctic Federal University Arkhangelsk Russia
| | - Ekaterina S. Konopleva
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences Arkhangelsk Russia
- Northern Arctic Federal University Arkhangelsk Russia
| |
Collapse
|
5
|
Water Mite Diversity (Acariformes: Prostigmata: Parasitengonina: Hydrachnidiae) from Karst Ecosystems in Southern of Mexico: A Barcoding Approach. DIVERSITY 2020. [DOI: 10.3390/d12090329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Water mites represent the most diverse and abundant group of Arachnida in freshwater ecosystems, with about 6000 species described; however, it is estimated that this number represents only 30% of the total expected species. Despite having strong biotic interactions with their community and having the potential to be exceptional bioindicators, they are frequently excluded from studies of water quality or ecology, due to actual and perceived difficulties of taxonomic identification in this group. The objective of this study is to use the variations in the sequences of the mitochondrial cytochrome oxidase subunit I (COI), also known as the DNA barcodes region, as a tool to assess the diversity of water mites at 24 sites in the Yucatan Peninsula of Mexico. We found 77 genetic groups or putative species corresponding to 18 genera: Arrenurus, Atractides, Centrolimnesia, Eylais, Geayia, Hydrodroma, Hydryphantes, Hygrobates, Koenikea, Krendowskia, Limnesia, Limnochares, Mamersellides, Mideopsis, Neumania, Piona, Torrenticola, and Unionicola. This was significant, since there are only 35 species described for this region. Furthermore, this molecular information has allowed us to infer that there are characteristic assemblies per site. These data will facilitate the incorporation of water mites in different studies while the curatorial work continues to assign a Linnaean name.
Collapse
|
6
|
Zhao Y, Zhang WY, Wang RL, Niu DL. Divergent domains of 28S ribosomal RNA gene: DNA barcodes for molecular classification and identification of mites. Parasit Vectors 2020; 13:251. [PMID: 32404192 PMCID: PMC7222323 DOI: 10.1186/s13071-020-04124-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The morphological and molecular identification of mites is challenging due to the large number of species, the microscopic size of the organisms, diverse phenotypes of the same species, similar morphology of different species and a shortage of molecular data. METHODS Nine medically important mite species belonging to six families, i.e. Demodex folliculorum, D. brevis, D. canis, D. caprae, Sarcoptes scabiei canis, Psoroptes cuniculi, Dermatophagoides farinae, Cheyletus malaccensis and Ornithonyssus bacoti, were collected and subjected to DNA barcoding. Sequences of cox1, 16S and 12S mtDNA, as well as ITS, 18S and 28S rDNA from mites were retrieved from GenBank and used as candidate genes. Sequence alignment and analysis identified 28S rDNA as the suitable target gene. Subsequently, universal primers of divergent domains were designed for molecular identification of 125 mite samples. Finally, the universality of the divergent domains with high identification efficiency was evaluated in Acari to screen DNA barcodes for mites. RESULTS Domains D5 (67.65%), D6 (62.71%) and D8 (77.59%) of the 28S rRNA gene had a significantly higher sequencing success rate, compared to domains D2 (19.20%), D3 (20.00%) and D7 (15.12%). The successful divergent domains all matched the closely-related species in GenBank with an identity of 74-100% and a coverage rate of 92-100%. Phylogenetic analysis also supported this result. Moreover, the three divergent domains had their own advantages. D5 had the lowest intraspecies divergence (0-1.26%), D6 had the maximum barcoding gap (10.54%) and the shortest sequence length (192-241 bp), and D8 had the longest indels (241 bp). Further universality analysis showed that the primers of the three divergent domains were suitable for identification across 225 species of 40 families in Acari. CONCLUSIONS This study confirmed that domains D5, D6 and D8 of 28S rDNA are universal DNA barcodes for molecular classification and identification of mites. 28S rDNA, as a powerful supplement for cox1 mtDNA 5'-end 648-bp fragment, recommended by the International Barcode of Life (IBOL), will provide great potential in molecular identification of mites in future studies because of its universality.
Collapse
Affiliation(s)
- Yae Zhao
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Wan-Yu Zhang
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Rui-Ling Wang
- Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, People's Republic of China
| | - Dong-Ling Niu
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| |
Collapse
|
7
|
Blattner L, Gerecke R, von Fumetti S. Hidden biodiversity revealed by integrated morphology and genetic species delimitation of spring dwelling water mite species (Acari, Parasitengona: Hydrachnidia). Parasit Vectors 2019; 12:492. [PMID: 31639027 PMCID: PMC6805402 DOI: 10.1186/s13071-019-3750-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/12/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Water mites are among the most diverse organisms inhabiting freshwater habitats and are considered as substantial part of the species communities in springs. As parasites, Hydrachnidia influence other invertebrates and play an important role in aquatic ecosystems. In Europe, 137 species are known to appear solely in or near springheads. New species are described frequently, especially with the help of molecular species identification and delimitation methods. The aim of this study was to verify the mainly morphology-based taxonomic knowledge of spring-inhabiting water mites of central Europe and to build a genetic species identification library. METHODS We sampled 65 crenobiontic species across the central Alps and tested the suitability of mitochondrial (cox1) and nuclear (28S) markers for species delimitation and identification purposes. To investigate both markers, distance- and phylogeny-based approaches were applied. The presence of a barcoding gap was tested by using the automated barcoding gap discovery tool and intra- and interspecific genetic distances were investigated. Furthermore, we analyzed phylogenetic relationships between different taxonomic levels. RESULTS A high degree of hidden diversity was observed. Seven taxa, morphologically identified as Bandakia concreta Thor, 1913, Hygrobates norvegicus (Thor, 1897), Ljania bipapillata Thor, 1898, Partnunia steinmanni Walter, 1906, Wandesia racovitzai Gledhill, 1970, Wandesia thori Schechtel, 1912 and Zschokkea oblonga Koenike, 1892, showed high intraspecific cox1 distances and each consisted of more than one phylogenetic clade. A clear intraspecific threshold between 5.6-6.0% K2P distance is suitable for species identification purposes. The monophyly of Hydrachnidia and the main superfamilies is evident with different species clearly separated into distinct clades. cox1 separates water mite species but is unsuitable for resolving higher taxonomic levels. CONCLUSIONS Water mite species richness in springs is higher than has been suggested based on morphological species identification alone and further research is needed to evaluate the true diversity. The standard molecular species identification marker cox1 can be used to identify species but should be complemented by a nuclear marker, e.g. 28S, to resolve taxonomic relationships. Our results contribute to the taxonomical knowledge on spring inhabiting Hydrachnida, which is indispensable for the development and implementation of modern environment assessment methods, e.g. metabarcoding, in spring ecology.
Collapse
Affiliation(s)
- Lucas Blattner
- Department of Environmental Sciences, Geoecology Research Group, University of Basel, St. Johanns-Vorstadt 10, 4056 Basel, Switzerland
| | - Reinhard Gerecke
- Department of Biology, University of Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany
| | - Stefanie von Fumetti
- Department of Environmental Sciences, Geoecology Research Group, University of Basel, St. Johanns-Vorstadt 10, 4056 Basel, Switzerland
| |
Collapse
|
8
|
Stålstedt J, Łaydanowicz J, Lehtinen PT, Bergsten J, Mąkol J. Checklist of terrestrial Parasitengona mites in Fennoscandia with new species- and distribution records (Acariformes: Prostigmata). Biodivers Data J 2019; 7:e36094. [PMID: 31274981 PMCID: PMC6595010 DOI: 10.3897/bdj.7.e36094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 11/12/2022] Open
Abstract
The knowledge of terrestrial Parasitengona in Fennoscandia lies far behind that of their aquatic counterparts, the water mites (Hydrachnidia). Based on new inventories, we provide primary data and an annotated checklist of terrestrial Parasitengona in Fennoscandia including 107 species. Out of these, nineteen species are new findings for the region and five are species potentially new for science. Twenty-three species are new for Norway, fourteen for Finland and eleven for Sweden. The known recorded fauna today of terrestrial Parasitengona is 80 species for Norway, 54 for Sweden and 48 for Finland. Primary data include georeferenced locality data as well as collecting techniques and microhabitat to increase the knowledge on species' habitat requirements.
Collapse
Affiliation(s)
- Jeanette Stålstedt
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden Department of Zoology, Swedish Museum of Natural History Stockholm Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden Department of Zoology, Stockholm University Stockholm Sweden
| | - Joanna Łaydanowicz
- Department of Invertebrate Systematics and Ecology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland Department of Invertebrate Systematics and Ecology, Wrocław University of Environmental and Life Sciences Wrocław Poland
| | - Pekka T Lehtinen
- Zoological Museum, University of Turku, Turku, Finland Zoological Museum, University of Turku Turku Finland
| | - Johannes Bergsten
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden Department of Zoology, Swedish Museum of Natural History Stockholm Sweden
| | - Joanna Mąkol
- Department of Invertebrate Systematics and Ecology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland Department of Invertebrate Systematics and Ecology, Wroclaw University of Environmental and Life Sciences Wroclaw Poland
| |
Collapse
|
9
|
Linking morphological and molecular taxonomy for the identification of poultry house, soil, and nest dwelling mites in the Western Palearctic. Sci Rep 2019; 9:5784. [PMID: 30962473 PMCID: PMC6453913 DOI: 10.1038/s41598-019-41958-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/20/2019] [Indexed: 01/03/2023] Open
Abstract
Because of its ability to expedite specimen identification and species delineation, the barcode index number (BIN) system presents a powerful tool to characterize hyperdiverse invertebrate groups such as the Acari (mites). However, the congruence between BINs and morphologically recognized species has seen limited testing in this taxon. We therefore apply this method towards the development of a barcode reference library for soil, poultry litter, and nest dwelling mites in the Western Palearctic. Through analysis of over 600 specimens, we provide DNA barcode coverage for 35 described species and 70 molecular taxonomic units (BINs). Nearly 80% of the species were accurately identified through this method, but just 60% perfectly matched (1:1) with BINs. High intraspecific divergences were found in 34% of the species examined and likely reflect cryptic diversity, highlighting the need for revision in these taxa. These findings provide a valuable resource for integrative pest management, but also highlight the importance of integrating morphological and molecular methods for fine-scale taxonomic resolution in poorly-known invertebrate lineages.
Collapse
|
10
|
Laska A, Majer A, Szydło W, Karpicka-Ignatowska K, Hornyák M, Labrzycka A, Skoracka A. Cryptic diversity within grass-associated Abacarus species complex (Acariformes: Eriophyidae), with the description of a new species, Abacarus plumiger n. sp. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 76:1-28. [PMID: 30171478 DOI: 10.1007/s10493-018-0291-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/24/2018] [Indexed: 05/20/2023]
Abstract
Accurate estimation of species richness is often complex as genetic divergence is not always accompanied by appreciable morphological differentiation. In consequence, cryptic lineages or species evolve. Cryptic speciation is common especially in taxa characterized by small and simplified bodies, what makes their proper identification challenging. The cereal rust mite, Abacarus hystrix, was regarded for a long time as a species associated with a wide range of grass hosts, whereas wide host ranges are rather rare in eriophyoid mites. Therefore, the generalist status of A. hystrix was questioned. In this paper we demonstrate that the diversity within Abacarus species associated with grasses is more complex than it was previously thought. The 78 Abacarus mtDNA COI sequences used in this study formed 10 highly supported clades (bootstrap value 99%) and four more distinct genetic lineages were represented by unique sequences. The genetic distances between them ranged from 6.6 to 26.5%. Moreover, morphological study and genetic approach based on the combination of the Poisson Tree Processes model for species delimitation (PTP) and a Bayesian implementation of PTP (bPTP), and Neighbour Joining analyses led to delimitation of a new species within the Abacarus complex: Abacarus plumiger, specialized on smooth brome (Bromus inermis). Furthermore, our analyses demonstrated a pattern of host-associated differentiation within the complex. Overall, our study indicates that cryptic speciation occurs in the grass-associated Abacarus genus, and suggests the need for more extensive sampling using integrative methods.
Collapse
Affiliation(s)
- Alicja Laska
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614, Poznań, Poland.
| | - Agnieszka Majer
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Wiktoria Szydło
- Department of Entomology, University of Nebraska-Lincoln, 103 Entomology Hall, Lincoln, NE, 68583-0816, USA
| | - Kamila Karpicka-Ignatowska
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Marta Hornyák
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Podłużna 3, 30-239, Kraków, Poland
| | - Anna Labrzycka
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614, Poznań, Poland
| |
Collapse
|
11
|
Ding JH, Sun JL, Zhang X. A new species of the water mite genus Sperchon Kramer, 1877 from China, with identifying Sperchon rostratus Lundblad, 1969 through DNA barcoding (Acari, Hydrachnidia, Sperchontidae). Zookeys 2017:47-61. [PMID: 29118627 PMCID: PMC5674144 DOI: 10.3897/zookeys.707.13493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/07/2017] [Indexed: 11/12/2022] Open
Abstract
A new species of the water mite genus Sperchon Kramer, 1877 from China, Sperchon fuxiensis Zhang, sp. n., is described and illustrated in this article. DNA barcoding for the new species is documented for future use. Descriptions of both male and female of Sperchon rostratus Lundblad, 1969 are given in the present study, and DNA barcoding for identifying S. rostratus is also discussed.
Collapse
Affiliation(s)
- Jian-Hua Ding
- School of Life Sciences, Huaibei Normal University; Huaibei 235000, China
| | - Jing-Lan Sun
- School of Life Sciences, Huaibei Normal University; Huaibei 235000, China
| | - Xu Zhang
- School of Life Sciences, Huaibei Normal University; Huaibei 235000, China
| |
Collapse
|
12
|
Skoracka A, Magalhães S, Rector BG, Kuczyński L. Cryptic speciation in the Acari: a function of species lifestyles or our ability to separate species? EXPERIMENTAL & APPLIED ACAROLOGY 2015; 67:165-82. [PMID: 26209969 PMCID: PMC4559570 DOI: 10.1007/s10493-015-9954-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/19/2015] [Indexed: 05/08/2023]
Abstract
There are approximately 55,000 described Acari species, accounting for almost half of all known Arachnida species, but total estimated Acari diversity is reckoned to be far greater. One important source of currently hidden Acari diversity is cryptic speciation, which poses challenges to taxonomists documenting biodiversity assessment as well as to researchers in medicine and agriculture. In this review, we revisit the subject of biodiversity in the Acari and investigate what is currently known about cryptic species within this group. Based on a thorough literature search, we show that the probability of occurrence of cryptic species is mainly related to the number of attempts made to detect them. The use of, both, DNA tools and bioassays significantly increased the probability of cryptic species detection. We did not confirm the generally-accepted idea that species lifestyle (i.e. free-living vs. symbiotic) affects the number of cryptic species. To increase detection of cryptic lineages and to understand the processes leading to cryptic speciation in Acari, integrative approaches including multivariate morphometrics, molecular tools, crossing, ecological assays, intensive sampling, and experimental evolution are recommended. We conclude that there is a demonstrable need for future investigations focusing on potentially hidden mite and tick species and addressing evolutionary mechanisms behind cryptic speciation within Acari.
Collapse
Affiliation(s)
- Anna Skoracka
- Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland,
| | | | | | | |
Collapse
|
13
|
Häggqvist S, Ulefors SO, Ronquist F. A new species group in Megaselia, the lucifrons group, with description of a new species (Diptera, Phoridae). Zookeys 2015; 512:89-108. [PMID: 26257562 PMCID: PMC4523756 DOI: 10.3897/zookeys.512.9494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/24/2015] [Indexed: 11/25/2022] Open
Abstract
With 1,400 described species, Megaselia is one of the most species-rich genera in the animal kingdom, and at the same time one of the least studied. An important obstacle to taxonomic progress is the lack of knowledge concerning the phylogenetic structure within the genus. Classification of Megaselia at the level of subgenus is incomplete although Schmitz addressed several groups of species in a series of monographs published from 1956 to 1981. Another problem is the lack of molecular phylogenetic analyses to support morphology-based conclusions. As a contribution towards addressing these problems, we here circumscribe a previously unrecognized monophyletic lineage of Megaselia consisting of species similar to Megaselialucifrons. We base this taxonomic decision on morphological study of an extensive phorid material from Sweden, complemented by molecular analyses of select exemplars using two markers (COI and 28S). We name the clade the lucifrons species group, and show that it contains three distinct species. Our results also demonstrate that Megaseliasubnitida Lundbeck, 1920, previously treated as a synonym of Megaselialucifrons Schmitz, 1918, is a separate species, and we remove it from synonymy. The third species in the group was previously unknown; we describe it here as Megaseliaalbalucifrons sp. n.
Collapse
Affiliation(s)
- Sibylle Häggqvist
- Swedish Museum of Natural History, Department of Zoology, Box 50007, SE-10405 Stockholm, Sweden
- Stockholm University, Department of Zoology, Svante Arrhenius väg 18A, SE-10691 Stockholm, Sweden
| | | | - Fredrik Ronquist
- Swedish Museum of Natural History, Department of Bioinformatics and Genetics, Box 50007, SE-10405 Stockholm, Sweden
| |
Collapse
|