1
|
Pedersen S, Kennedy PJ, O'Shea-Wheller TA, Poidatz J, Christie A, Osborne JL, Tyler CR. Broad ecological threats of an invasive hornet revealed through a deep sequencing approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178978. [PMID: 40037968 DOI: 10.1016/j.scitotenv.2025.178978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Most terrestrial invertebrates are in considerable decline, and the range expansion of the invasive hornet, Vespa velutina nigrithorax, poses an additional threat. Although now found in much of western Europe, the full extent of the hornet's predatory activity remains unexplored. While impacts on honey bees are well-documented, evidence of a wider dietary spectrum is emerging, indicating potentially broad ecological ramifications. Here, we conduct the first large-scale study of the diet of V. velutina, utilising deep sequencing to characterise the larval gut contents of over 1500 samples from Jersey, France, Spain, and the UK. Our results indicate that V. velutina is a highly flexible predator, enabling its continued range expansion capacity. Analyses detected 1449 taxa, with greater prey richness in samples from southern latitudes, and considerable spatiotemporal variation in dietary composition. Hymenoptera, Diptera, Hemiptera, Coleoptera, Lepidoptera, and Araneae were the most frequently occurring orders predated, each characterised by high taxonomic diversity. The honey bee Apis mellifera was the most abundant species, being found in all sampled nests and showing greater relative read numbers with increasing apiary density and proximity, supporting concerns for the impact of V. velutina on apiculture. Notably, 43 of the 50 most commonly predated invertebrates were also flower visitors, including 4 common bumblebee species, indicating potentially substantial risks to wild pollinators. These data provide wide and deep evidence to support risk evaluation of this species and its potential environmental impact as it spreads across Europe.
Collapse
Affiliation(s)
- Siffreya Pedersen
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Peter J Kennedy
- Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK
| | | | - Juliette Poidatz
- Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK
| | - Alastair Christie
- Department for Infrastructure and Environment, Government of Jersey, Howard Davis Farm, La Route de la Trinite, JE3 5JP, Jersey
| | - Juliet L Osborne
- Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK
| | - Charles R Tyler
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
2
|
Lucatero A, Jha S, Philpott SM. Local Habitat Complexity and Its Effects on Herbivores and Predators in Urban Agroecosystems. INSECTS 2024; 15:41. [PMID: 38249047 PMCID: PMC10816164 DOI: 10.3390/insects15010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
In urban community gardens, cultivated vegetation provides variable levels of habitat complexity, which can suppress pests by promoting predator diversity and improving pest control. In this study, we examine three components of the structural complexity of garden vegetation (cover, diversity, and connectivity) to investigate whether higher garden vegetation complexity leads to fewer herbivores, more predators, and higher predation. We worked in eight community gardens where we quantified vegetation complexity, sampled the arthropod community, and measured predation on corn earworm eggs. We found that plots with high vegetation cover supported higher species richness and greater abundance of predatory insects. High vegetation cover also supported a greater abundance and species richness of spiders. In contrast, high vegetation diversity was negatively associated with predator abundance. While high predator abundance was positively associated with egg predation, greater predator species richness had a negative impact on egg predation, suggesting that antagonism between predators may limit biological control. Community gardeners may thus manipulate vegetation cover and diversity to promote higher predator abundance and diversity in their plots. However, the species composition of predators and the prevalence of interspecific antagonism may ultimately determine subsequent impacts on biological pest control.
Collapse
Affiliation(s)
- Azucena Lucatero
- Environmental Studies Department, University of California, Santa Cruz, CA 95064, USA;
| | - Shalene Jha
- Integrative Biology Department, University of Texas at Austin, Austin, TX 78712, USA;
- Lady Bird Johnson Wildflower Center, University of Texas at Austin, Austin, TX 78739, USA
| | - Stacy M. Philpott
- Environmental Studies Department, University of California, Santa Cruz, CA 95064, USA;
| |
Collapse
|
3
|
Wise DH, Mores RM, M. Pajda-De La O J, McCary MA. Pattern of seasonal variation in rates of predation between spider families is temporally stable in a food web with widespread intraguild predation. PLoS One 2023; 18:e0293176. [PMID: 37903108 PMCID: PMC10615273 DOI: 10.1371/journal.pone.0293176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023] Open
Abstract
Intraguild predation (IGP)-predation between generalist predators (IGPredator and IGPrey) that potentially compete for a shared prey resource-is a common interaction module in terrestrial food webs. Understanding temporal variation in webs with widespread IGP is relevant to testing food web theory. We investigated temporal constancy in the structure of such a system: the spider-focused food web of the forest floor. Multiplex PCR was used to detect prey DNA in 3,300 adult spiders collected from the floor of a deciduous forest during spring, summer, and fall over four years. Because only spiders were defined as consumers, the web was tripartite, with 11 consumer nodes (spider families) and 22 resource nodes: 11 non-spider arthropod taxa (order- or family-level) and the 11 spider families. Most (99%) spider-spider predation was on spider IGPrey, and ~90% of these interactions were restricted to spider families within the same broadly defined foraging mode (cursorial or web-spinning spiders). Bootstrapped-derived confidence intervals (BCI's) for two indices of web structure, restricted connectance and interaction evenness, overlapped broadly across years and seasons. A third index, % IGPrey (% IGPrey among all prey of spiders), was similar across years (~50%) but varied seasonally, with a summer rate (65%) ~1.8x higher than spring and fall. This seasonal pattern was consistent across years. Our results suggest that extensive spider predation on spider IGPrey that exhibits consistent seasonal variation in frequency, and that occurs primarily within two broadly defined spider-spider interaction pathways, must be incorporated into models of the dynamics of forest-floor food webs.
Collapse
Affiliation(s)
- David H. Wise
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, United States of America
| | - Robin M. Mores
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, United States of America
| | - Jennifer M. Pajda-De La O
- Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, Illinois, United States of America
| | - Matthew A. McCary
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
4
|
Riaz M, Warren D, Wittwer C, Cocchiararo B, Hundertmark I, Reiners TE, Klimpel S, Pfenninger M, Khaliq I, Nowak C. Using eDNA to understand predator-prey interactions influenced by invasive species. Oecologia 2023; 202:757-767. [PMID: 37594600 PMCID: PMC10474997 DOI: 10.1007/s00442-023-05434-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Invasive predatory species may alter population dynamic processes of their prey and impact biological communities and ecosystem processes. Revealing biotic interactions, however, including the relationship between predator and prey, is a difficult task, in particular for species that are hard to monitor. Here, we present a case study that documents the utility of environmental DNA analysis (eDNA) to assess predator-prey interactions between two invasive fishes (Lepomis gibbosus, Pseudorasbora parva) and two potential amphibian prey species, (Triturus cristatus, Pelobates fuscus). We used species-specific TaqMan assays for quantitative assessment of eDNA concentrations from water samples collected from 89 sites across 31 ponds during three consecutive months from a local amphibian hotspot in Germany. We found a negative relationship between eDNA concentrations of the predators (fishes) and prey (amphibians) using Monte-Carlo tests. Our study highlights the potential of eDNA application to reveal predator-prey interactions and confirms the hypothesis that the observed local declines of amphibian species may be at least partly caused by recently introduced invasive fishes. Our findings have important consequences for local conservation management and highlight the usefulness of eDNA approaches to assess ecological interactions and guide targeted conservation action.
Collapse
Affiliation(s)
- Maria Riaz
- Conservation Genetics Section, Senckenberg Research Institute and Natural History Museum, 63571, Frankfurt, Gelnhausen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany.
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Straße 9, 60438, Frankfurt Am Main, Germany.
| | - Dan Warren
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
| | - Claudia Wittwer
- Conservation Genetics Section, Senckenberg Research Institute and Natural History Museum, 63571, Frankfurt, Gelnhausen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Straße 9, 60438, Frankfurt Am Main, Germany
| | - Berardino Cocchiararo
- Conservation Genetics Section, Senckenberg Research Institute and Natural History Museum, 63571, Frankfurt, Gelnhausen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
| | - Inga Hundertmark
- Hessische Gesellschaft Für Ornithologie Und Naturschutz (HGON E. V.), Lindenstrasse 5, 61209, Echzell, Germany
| | - Tobias Erik Reiners
- Conservation Genetics Section, Senckenberg Research Institute and Natural History Museum, 63571, Frankfurt, Gelnhausen, Germany
- Hessische Gesellschaft Für Ornithologie Und Naturschutz (HGON E. V.), Lindenstrasse 5, 61209, Echzell, Germany
| | - Sven Klimpel
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Straße 9, 60438, Frankfurt Am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
| | - Markus Pfenninger
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| | - Imran Khaliq
- Department of Education, Punjab, Pakistan
- Department of Aquatic Ecology Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland
- Snow and Landscape Research (WSL), Swiss Federal Institute for Forest, Flüelastr. 11, 7260, Davos Dorf, Switzerland
| | - Carsten Nowak
- Conservation Genetics Section, Senckenberg Research Institute and Natural History Museum, 63571, Frankfurt, Gelnhausen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
| |
Collapse
|
5
|
Saqib HSA, Sun L, Pozsgai G, Liang P, Goraya MU, Akutse KS, You M, Gurr GM, You S. Gut microbiota assemblages of generalist predators are driven by local- and landscape-scale factors. Front Microbiol 2023; 14:1172184. [PMID: 37256058 PMCID: PMC10225636 DOI: 10.3389/fmicb.2023.1172184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
The gut microbiomes of arthropods have significant impact on key physiological functions such as nutrition, reproduction, behavior, and health. Spiders are diverse and numerically dominant predators in crop fields where they are potentially important regulators of pests. Harnessing spiders to control agricultural pests is likely to be supported by an understanding of their gut microbiomes, and the environmental drivers shaping microbiome assemblages. This study aimed to deciphering the gut microbiome assembly of these invertebrate predators and elucidating potential implications of key environmental constraints in this process. Here, we used high-throughput sequencing to examine for the first time how the assemblages of bacteria in the gut of spiders are shaped by environmental variables. Local drivers of microbiome composition were globally-relevant input use system (organic production vs. conventional practice), and crop identity (Chinese cabbage vs. cauliflower). Landscape-scale factors, proportion of forest and grassland, compositional diversity, and habitat edge density, also strongly affected gut microbiota. Specific bacterial taxa were enriched in gut of spiders sampled from different settings and seasons. These findings provide a comprehensive insight into composition and plasticity of spider gut microbiota. Understanding the temporal responses of specific microbiota could lead to innovative strategies development for boosting biological control services of predators.
Collapse
Affiliation(s)
- Hafiz Sohaib Ahmed Saqib
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Guangdong Provincial Key Laboratory of Marine Biology, College of Science, Shantou University, Shantou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linyang Sun
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gabor Pozsgai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Ce3C - Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE – Global Change and Sustainability Institute, University of the Azores, Faculty of Agricultural Sciences and Environment, Angra do Heroísmo, Açores, Portugal
| | - Pingping Liang
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Mohsan Ullah Goraya
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Komivi Senyo Akutse
- Plant Health Theme, International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Geoff M. Gurr
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Gulbali Institute, Charles Sturt University, Orange, NSW, Australia
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Paula DP, Andow DA. DNA High-Throughput Sequencing for Arthropod Gut Content Analysis to Evaluate Effectiveness and Safety of Biological Control Agents. NEOTROPICAL ENTOMOLOGY 2023; 52:302-332. [PMID: 36478343 DOI: 10.1007/s13744-022-01011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
The search for effective biological control agents without harmful non-target effects has been constrained by the use of impractical (field direct observation) or imprecise (cage experiments) methods. While advances in the DNA sequencing methods, more specifically the development of high-throughput sequencing (HTS), have been quickly incorporated in biodiversity surveys, they have been slow to be adopted to determine arthropod prey range, predation rate and food web structure, and critical information to evaluate the effectiveness and safety of a biological control agent candidate. The lack of knowledge on how HTS methods could be applied by ecological entomologists constitutes part of the problem, although the lack of expertise and the high cost of the analysis also are important limiting factors. In this review, we describe how the latest HTS methods of metabarcoding and Lazaro, a method to identify prey by mapping unassembled shotgun reads, can serve biological control research, showing both their power and limitations. We explain how they work to determine prey range and also how their data can be used to estimate predation rates and subsequently be translated into food webs of natural enemy and prey populations helping to elucidate their role in the community. We present a brief history of prey detection through molecular gut content analysis and also the attempts to develop a more precise formula to estimate predation rates, a problem that still remains. We focused on arthropods in agricultural ecosystems, but most of what is covered here can be applied to natural systems and non-arthropod biological control candidates as well.
Collapse
|
7
|
Hsu G. An experimental framework for quantifying the degree of intraguild predation in omnivorous food webs in the field. J Zool (1987) 2023. [DOI: 10.1111/jzo.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- G.‐C. Hsu
- Department of Life Science National Taiwan University Taipei Taiwan
| |
Collapse
|
8
|
Saqib HSA, Sun L, Pozsgai G, Liang P, You M, Gurr GM, You S. DNA metabarcoding of gut contents reveals key habitat and seasonal drivers of trophic networks involving generalist predators in agricultural landscapes. PEST MANAGEMENT SCIENCE 2022; 78:5390-5401. [PMID: 36057113 DOI: 10.1002/ps.7161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/28/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Understanding the networks of trophic interactions into which generalist predators are embedded is key to assessing their ecological role of in trophic networks and the biological control services they provide. The advent of affordable DNA metabarcoding approaches greatly facilitates quantitative understanding of trophic networks and their response to environmental drivers. Here, we examine how key environmental gradients interact to shape predation by Lycosidae in highly dynamic vegetable growing systems in China. RESULTS For the sampled Lycosidae, crop identity, pesticide use and seasons shape the abundance of prey detected in spider guts. For the taxonomic richness of prey, local- and landscape-scale factors gradients were more influential. Multivariate ordinations confirm that these crop-abundant spiders dynamically adjust their diet to reflect environmental constraints and seasonal availability to prey. CONCLUSION Plasticity in diet composition is likely to account for the persistence of spiders in relatively ephemeral brassica crops. Our findings provide further insights into the optimization of habitat management for predator-based biological control practices. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hafiz Sohaib Ahmed Saqib
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Guangdong Provincial Key Laboratory of Marine Biology, College of Science, Shantou University, Shantou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linyang Sun
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gabor Pozsgai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Azorean Biodiversity Group, Centre for Ecology, Evolution and Environmental Changes, University of Azores, Ponta Delgada, Portugal
| | - Pingping Liang
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Geoff M Gurr
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Graham Centre, Charles Sturt University, Orange, Australia
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- BGI-Sanya, Sanya, China
| |
Collapse
|
9
|
Yang T, Song X, Zhong Y, Wang B, Zhou C. Field investigation- and dietary metabarcoding-based screening of arthropods that prey on primary tea pests. Ecol Evol 2022; 12:e9060. [PMID: 35813924 PMCID: PMC9251880 DOI: 10.1002/ece3.9060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/11/2022] Open
Abstract
Predatory natural enemies play key functional roles in biological control. Abundant predatory arthropod species have been recorded in tea plantation ecosystems. However, few studies have comprehensively evaluated the control effect of predatory arthropods on tea pests in the field. We performed a 1-year field investigation and collected predatory arthropods and pests in the tea canopy. A total of 7931 predatory arthropod individuals were collected, and Coleosoma blandum (Araneae, Theridiidae) was the most abundant species in the studied tea plantation. The population dynamics between C. blandum and four main tea pest species (Aleurocanthus spiniferus, Empoasca onukii, Ectropis grisescens, and Scopula subpunctaria) were established using the individual number of predators and pests in each month. The results showed that C. blandum appeared to co-occur in the tea canopy with A. spiniferus, Em. onukii, and Ec. grisescens in a longer period. The prey spectrum of C. blandum was further analyzed using DNA metabarcoding. Among prey species, A. spiniferus, Em. onukii, and Ec. grisescens were included, and the relative abundance and positive rates of target DNA fragments of A. spiniferus were greater than that of other two pests. Combined with the high dominance index of C. blandum, co-occurrence between C. blandum and A. spiniferus in time and space and high positive rate and relative abundance of target DNA fragments of A. spiniferus, C. blandum was identified to prey on A. spiniferus, and C. blandum may be an important predator of A. spiniferus. Thus, C. blandum has potential as a biological control agent of A. spiniferus in an integrated pest management strategy.
Collapse
Affiliation(s)
- Tingbang Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Institute of EcologyChina West Normal UniversityNanchongChina
| | - Xuhao Song
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Institute of EcologyChina West Normal UniversityNanchongChina
| | - Yang Zhong
- School of Nuclear Technology and Chemistry & BiologyHubei University of Science and TechnologyXianningChina
- Hubei Engineering Research Center for Fragrant PlantsHubei University of Science and TechnologyXianningChina
| | - Bin Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Institute of EcologyChina West Normal UniversityNanchongChina
| | - Caiquan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Institute of EcologyChina West Normal UniversityNanchongChina
| |
Collapse
|
10
|
Cuff JP, Windsor FM, Tercel MPTG, Kitson JJN, Evans DM. Overcoming the pitfalls of merging dietary metabarcoding into ecological networks. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan P. Cuff
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| | - Fredric M. Windsor
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| | - Maximillian P. T. G. Tercel
- School of Biosciences Cardiff University Cardiff UK
- Durrell Wildlife Conservation Trust Jersey Channel Islands
| | - James J. N. Kitson
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| | - Darren M. Evans
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
11
|
Hambäck P, Cirtwill A, García D, Grudzinska-Sterno M, Miñarro M, Tasin M, Yang X, Samnegård U. More intraguild prey than pest species in arachnid diets may compromise biological control in apple orchards. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|