1
|
Liang Y, Leifheit EF, Lehmann A, Rillig MC. Soil organic carbon stabilization is influenced by microbial diversity and temperature. Sci Rep 2025; 15:13990. [PMID: 40263499 PMCID: PMC12015591 DOI: 10.1038/s41598-025-98009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
The stabilization of soil organic carbon (SOC) is influenced by soil microbes and environmental factors, particularly temperature, which significantly affects SOC decomposition. This study investigates the effects of temperature (ambient: 25 °C; elevated: 27.5 °C) and soil microbial diversity (low, medium, and high) on the formation of stabilized SOC, focusing on mineral-associated organic carbon (MAOC) and water-stable aggregates, through a 75-day model soil incubation experiment. We measured water-stable aggregates, microbial respiration, and SOC in different fractions. Our results demonstrate that microbial diversity is crucial for SOC mineralization; low diversity resulted in 3.93-6.26% lower total carbon and 8.05-17.32% lower particulate organic carbon (POC) compared to medium and high diversity under the same temperature. While total MAOC was unaffected by temperature and microbial diversity, macroaggregate-occluded MAOC decreased by 8.78%, 38.36% and 9.40% under elevated temperature for low, medium and high diversity, respectively, likely driven by decreased macroaggregate formation. A negative correlation between macroaggregate-occluded POC and microbial respiration (r= -0.37, p < 0.05) suggested microbial decomposition of POC within macroaggregates contributed to respiration, with a portion of the decomposed POC potentially stabilized as microbial-derived MAOC. Notably, soils with medium microbial diversity exhibited the highest levels of both macroaggregate-occluded POC and MAOC at ambient temperature; however, elevated temperature disrupted this stabilization, reducing both POC retention and MAOC accumulation within macroaggregates. These findings underscore the temperature-sensitive interplay between microbial diversity and SOC stabilization, highlighting the need to disentangle microbial pathways governing C dynamics under climate change.
Collapse
Affiliation(s)
- Yun Liang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
- Shanghai Agri-Environmental and Cultivated Land Conservation of Scientific Observation and Experiment Station, Ministry of Agriculture and Rural Affairs, Shanghai, China.
- Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, China.
- Shanghai Key Laboratory of Horticultural Technology, Shanghai, 201403, China.
| | - Eva F Leifheit
- Institut für Biologie, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Anika Lehmann
- Institut für Biologie, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| |
Collapse
|
2
|
Shoumik BAA, Tiema A, Abiye W, Rai P, Adhikari K, Esmaeili-Gisavandani H, Khan MZ, Gülser C. Dynamics of soil carbon stock in response to land use conversion in European woodland and shrubland in the last decade. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124513. [PMID: 39970659 DOI: 10.1016/j.jenvman.2025.124513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 01/01/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
Soil carbon sequestration and its monitoring is important to improve climate resilience and mitigate global warming. According to the European Environment Agency (EEA), soils in Europe are losing carbon that could hamper achieving the EU climate targets. Hence, it is necessary to explore the dynamics of soil organic carbon (SOC) storage in different ecosystems so that the EU policymakers can observe the progress towards achieving EU Green Deal objectives. The aim of this research was to quantify the ΔSOC-S in woodland and shrubland in the last decade (2009-2018) and to study the ΔSOC-S due to the land use conversion. In this regard, revisited sampling points between 2009 and 2018 from the topsoil (0-20 cm) of woodland and shrubland of the EU + UK soil database named Land Use/Land Cover Area Frame Survey (LUCAS) was used. The analysis revealed that broadleaved-woodland to coniferous- or mixed-woodland conversion in 2018, and shrubland to woodland conversion in 2015 increased SOC-S. Overall, we found a net accumulation of SOC-S in woodland (2184.08 ton ha-1) and shrubland (302.78 ton ha-1) soil with 7.78% increment in woodland and 12.56% in shrubland between 2009/12 and 2018. Also, in central Europe, mean annual temperature (MAT) increased and precipitation (MAP) decreased between the study periods. The relationship between precipitation and temperature showed that precipitation and SOC-S in woodland had no relationship, but with the rising temperature, SOC-S in both land types significantly decreased revealing warming can significantly affect SOC-S.
Collapse
Affiliation(s)
- Baig Abdullah Al Shoumik
- Department of Soil Science and Plant Nutrition, Ondokuz Mayis University, Türkiye; Department of Soil Science and Agrophysics, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Poland.
| | - Abdelrahman Tiema
- Department of Soil Science and Plant Nutrition, Ondokuz Mayis University, Türkiye; Department of Soil Science and Agrophysics, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Poland; Department of Agrochemistry and Soil Science, Faculty of Agronomy, Agricultural University Plovdiv, Bulgaria
| | - Wudu Abiye
- Department of Soil Science and Plant Nutrition, Ondokuz Mayis University, Türkiye; Department of Soil Science and Agrophysics, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Poland
| | - Prabesh Rai
- Department of Soil Science and Plant Nutrition, Ondokuz Mayis University, Türkiye; Department of Agrochemistry and Soil Science, Faculty of Agronomy, Agricultural University Plovdiv, Bulgaria
| | - Karun Adhikari
- Department of Soil Science and Plant Nutrition, Ondokuz Mayis University, Türkiye; Department of Soil Science and Agrophysics, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Poland; Department of Agrochemistry and Soil Science, Faculty of Agronomy, Agricultural University Plovdiv, Bulgaria
| | - Hassan Esmaeili-Gisavandani
- Department of Soil Science and Plant Nutrition, Ondokuz Mayis University, Türkiye; Department of Soil Science and Agrophysics, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Poland; Department of Agrochemistry and Soil Science, Faculty of Agronomy, Agricultural University Plovdiv, Bulgaria
| | - Md Zulfikar Khan
- French National Research Institute for Agriculture, Food and Environment (INRAE), Poitou-Charentes, URP3F, 86600, Lusignan, France
| | - Coşkun Gülser
- Department of Soil Science and Plant Nutrition, Ondokuz Mayis University, Türkiye
| |
Collapse
|
3
|
Wasner D, Han X, Schnecker J, Frossard A, Venegas EZ, Doetterl S. Quantity Versus Quality: Links Between Soil Organic Matter and Bacterial Community Composition Along a Geoclimatic Gradient. Environ Microbiol 2025; 27:e70070. [PMID: 40056020 DOI: 10.1111/1462-2920.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 05/13/2025]
Abstract
Soil organic matter (SOM) quantity drives soil bacterial community composition from the regional to global scale. Qualitative characteristics of SOM are known to affect soil bacterial communities in manipulation experiments. However, it remains unresolved how strongly SOM characteristics affect soil bacterial community composition at the macroscale. Here, we investigated how quantity versus qualitative characteristics of SOM shape community composition along a biogeochemical gradient of grassland soils. We assessed relative abundance patterns of soil bacteria and characterised SOM based on scalable methods. Soils with higher SOM content (along a continuum between 0.6% and 18.7% SOC) and acidic pH (along a continuum between pH 4.1-6.7) hosted fewer narrowly distributed taxa (i.e., taxa occurring in few sites) and therefore had lower bacterial alpha diversity. We could explain a larger fraction of bacterial community composition (up to 59.6% of 16S rRNA reads) in these soils. Consequently, we understand community composition in low-SOM soils less than in high-SOM soils, because the drivers of narrowly distributed taxa remain poorly understood. Qualitative SOM characteristics did not strongly affect biogeographical patterns of widely distributed soil bacterial taxa. This suggests that broad aspects of SOM quality do not dominate soil bacterial community composition at the investigated macroscale.
Collapse
Affiliation(s)
- Daniel Wasner
- Soil Resources, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Xingguo Han
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Joerg Schnecker
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Aline Frossard
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Erick Zagal Venegas
- Department of Soil and Natural Resources, Faculty of Agronomy, University of Concepción, Concepción, Chile
| | - Sebastian Doetterl
- Soil Resources, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Crocker K, Skwara A, Kannan R, Murugan A, Kuehn S. Microbial functional guilds respond cohesively to rapidly fluctuating environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635766. [PMID: 39974892 PMCID: PMC11838272 DOI: 10.1101/2025.01.30.635766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Microbial communities experience environmental fluctuations across timescales from rapid changes in moisture, temperature, or light levels to long-term seasonal or climactic variations. Understanding how microbial populations respond to these changes is critical for predicting the impact of perturbations, interventions, and climate change on communities. Since communities typically harbor tens to hundreds of distinct taxa, the response of microbial abundances to perturbations is potentially complex. However, while taxonomic diversity is high, in many communities taxa can be grouped into functional guilds of strains with similar metabolic traits. These guilds effectively reduce the complexity of the system by providing a physiologically motivated coarse-graining. Here, using a combination of simulations, theory, and experiments, we show that the response of guilds to nutrient fluctuations depends on the timescale of those fluctuations. Rapid changes in nutrient levels drive cohesive, positively correlated abundance dynamics within guilds. For slower timescales of environmental variation, members within a guild begin to compete due to similar resource preferences, driving negative correlations in abundances between members of the same guild. Our results provide a route to understanding the relationship between functional guilds and community response to changing environments, as well as an experimental approach to discovering functional guilds via designed nutrient perturbations to communities.
Collapse
Affiliation(s)
- Kyle Crocker
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
- Center for Living Systems, The University of Chicago Chicago, IL 60637, USA
| | - Abigail Skwara
- Department of Ecology and Evolution. Yale University, New Haven, CT 06520, USA
| | - Rathi Kannan
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago Chicago, IL 60637, USA
- Center for Living Systems, The University of Chicago Chicago, IL 60637, USA
| | - Arvind Murugan
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
- Department of Physics, The University of Chicago. Chicago, IL 60637, USA
- Center for Living Systems, The University of Chicago Chicago, IL 60637, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University and The University of Chicago. Chicago, IL, USA
| | - Seppe Kuehn
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
- Center for Living Systems, The University of Chicago Chicago, IL 60637, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University and The University of Chicago. Chicago, IL, USA
| |
Collapse
|
5
|
Lu Y, Gao Z, Zhu Y, Yao D, Wang X. Microbial Community Structure, Diversity, and Succession During Decomposition of Kiwifruit Litters with Different Qualities. Microorganisms 2024; 12:2498. [PMID: 39770701 PMCID: PMC11727838 DOI: 10.3390/microorganisms12122498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
There are differences in the litter quality and decomposition rate of kiwifruit varieties, but it is not clear whether these differences are related to microbial communities. The leaf litters of two kiwifruit varieties (A. chinensis cv 'Hongyang' and A. chinensis cv 'Jinyan') were taken as objects, and the structure, diversity, and succession of the soil microbial communities were analyzed using an in situ decomposition experiment. Moreover, the contents of C, N, P, and K in the litters during decomposition were analyzed. The results show that there were variety differences in community structure at the generic level. Lophotrichus, Acaulium, and Fusarium were relatively more abundant in the microbial community of the 'Hongyang' kiwifruit litter, and Humicola and Tausonia were relatively more abundant in the microbial community of the 'Jinyan' kiwifruit litter. Subgroup_6 and Sphingomonas were the dominant bacteria. The bacterial community diversity of 'Jinyan' kiwifruit was higher than that of the 'Hongyang' kiwifruit litter. The community diversity was higher in the middle and later periods. The contents of C and N in the litters were the main factors affecting microbial communities. The abundances of Humicola and Apiotrichum were negatively correlated with the contents of C and N, and the abundances of Sphingomonas and SC-I-84 were positively correlated with the content of C. There were variety differences in the microbial communities corresponding to the decomposition processes of the 'Hongyang' and 'Jinyan' kiwifruit litters. The mechanisms of the variety differences were related to litter quality and the initial soil microbial community.
Collapse
Affiliation(s)
- Yupeng Lu
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (Y.L.); (Z.G.); (Y.Z.); (D.Y.)
- Jiangxi Kiwifruit Engineering Research Center, Nanchang 330096, China
| | - Zhu Gao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (Y.L.); (Z.G.); (Y.Z.); (D.Y.)
- Jiangxi Kiwifruit Engineering Research Center, Nanchang 330096, China
| | - Yulin Zhu
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (Y.L.); (Z.G.); (Y.Z.); (D.Y.)
- Jiangxi Kiwifruit Engineering Research Center, Nanchang 330096, China
| | - Dongliang Yao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (Y.L.); (Z.G.); (Y.Z.); (D.Y.)
- Jiangxi Kiwifruit Engineering Research Center, Nanchang 330096, China
| | - Xiaoling Wang
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (Y.L.); (Z.G.); (Y.Z.); (D.Y.)
- Jiangxi Kiwifruit Engineering Research Center, Nanchang 330096, China
| |
Collapse
|
6
|
Liu S, Luo H, Trevathan-Tackett SM, Liang J, Wang L, Zhang X, Ren Y, Jiang Z, Wu Y, Zhao C, Huang X. Nutrient-loaded seagrass litter experiences accelerated recalcitrant organic matter decay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176251. [PMID: 39277004 DOI: 10.1016/j.scitotenv.2024.176251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
High coastal nutrient loading can cause changes in seagrass chemistry traits that may lead to variability in seagrass litter decomposition processes. Such changes in decomposition have the potential to alter the carbon (C) sequestration capacity within seagrass meadows ('blue carbon'). However, the external and internal factors that drive the variability in decomposition rates of the different organic matter (OM) types of seagrass are poorly understood, especially recalcitrant OM (i.e. cellulose-associated OM and lignin-associated OM), thereby limiting our ability to evaluate the C sequestration potential. It was conducted a laboratory incubation to compare differences in the decomposition of Halophila beccarii litter collected from seagrass meadows with contrasting nutrient loading histories. The exponential decay constants of seagrass litter mass, cellulose-associated OM and lignin-associated OM were 0.009-0.032, 0.014-0.054 and 0.009-0.033 d-1, respectively. The seagrass litter collected from meadows with high nutrient loading exhibited greater losses of mass (25.0-41.2 %), cellulose-associated OM (2.8-18.5 %) and lignin-associated OM (9.6-31.2 %) than litter from relatively low nutrient loading meadows. The initial and temporal changes of the litter nitrogen (N) and phosphorus (P) concentrations, stoichiometric ratios of lignin/N, C/N, and C/P, and cellulose-associated OM content, were strongly correlated with the losses of litter mass and different types of OM. Further, temporal changes of litter C and OM types, particularly the OM and labile OM concentrations, were identified as the main driving factors for the loss of litter mass and loss of different OM types. These results indicated that nutrient-loaded seagrass litter, characterized by elevated nutrient levels and diminished amounts of recalcitrant OM, exhibits an accelerated decay rate for the recalcitrant OM. These differences in litter quality would lead to a reduced contribution of seagrass litter to long-term C stocks in eutrophic meadows, thereby weakening the stability of C sequestration. Considering the expected changes in seagrass litter chemistry traits and decay rates due to long-term nutrient loading, this study provides useful information for improving C sequestration capabilities through effective pollution management.
Collapse
Affiliation(s)
- Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxue Luo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stacey M Trevathan-Tackett
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; Biosciences and Food Technology Discipline, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jiening Liang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifeng Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Xia Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuzheng Ren
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Chunyu Zhao
- College of Ecology, Resources and Environment, Dezhou University, Dezhou 253023, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Zhou Z, Zhang G, Hua J, Xue J, Yu C. Tree species selection for optimizing soil carbon storage: Insights from litter decomposition and bacterial community analysis in coastal ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122984. [PMID: 39437689 DOI: 10.1016/j.jenvman.2024.122984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Coastal wetland ecosystems are critical sinks for atmospheric carbon dioxide, playing a vital role in global carbon cycling and climate regulation. The decomposition of leaf litter plays a crucial role in the formation and stability of soil organic carbon (SOC) in these environments. This study investigated the impact of leaf litter decomposition from five tree species (Populus deltoids, Ligustrum lucidum, Taxodium 'Zhongshanshan', Hibiscus hamabo, and Nerium oleander) on SOC dynamics, humus composition, and soil bacterial community structure in a tidal flat. Litterbags were used to monitor the mass loss and changes in litter chemical composition over 270 days. The results revealed significant differences in decomposition rates among the tree species, with Nerium oleander exhibiting the fastest decomposition and Populus deltoids the slowest. Surprisingly, initial litter chemistry did not correlate with decomposition rates; however, changes in lignin and hemicellulose content during decomposition were significantly related to mass loss. Despite its rapid decomposition, Nerium oleander litter resulted in the highest accumulation of SOC, total humus, and humin compared to the other species, challenging the conventional view that slower decomposition leads to greater SOC storage. The soil microbial community structure was significantly influenced by SOC, humus, and litter components, with distinct microbial assemblages associated with each tree species. A random forest model identified key bacterial taxa, predominantly Proteobacteria, as important predictors of SOC content, highlighting the role of bacterial diversity in regulating SOC dynamics. These findings underscore the importance of considering litter quality, decomposition dynamics, and bacterial community composition in strategies aimed at enhancing soil carbon sequestration. This study suggests that selecting tree species with rapidly decomposing litter, such as Nerium oleander, in coastal plantations can be an effective management tool for optimizing soil carbon storage, offering valuable insights for mitigating climate change impacts.
Collapse
Affiliation(s)
- Zhidong Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Gang Zhang
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources, Ministry of Natural Resources, Nanjing, 210007, China; Jiangsu Geological Bureau, Institute of Geochemical Exploration and Marine Geological Survey, Nanjing, 210007, China
| | - Jianfeng Hua
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.
| | - Jianhui Xue
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Chaoguang Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| |
Collapse
|
8
|
Dao VQ, Johnson CN, Platt WJ. Prescribed fire regimes influence responses of fungal and bacterial communities on new litter substrates in a brackish tidal marsh. PLoS One 2024; 19:e0311230. [PMID: 39352897 PMCID: PMC11444421 DOI: 10.1371/journal.pone.0311230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Processes modifying newly deposited litter substrates should affect fine fuels in fire-managed tidal marsh ecosystems. Differences in chemical composition and dynamics of litter should arise from fire histories that generate pyrodiverse plant communities, tropical cyclones that deposit wrack as litter, tidal inundation that introduces and alters sediments and microbes, and interactions among these different processes. The resulting diversity and dynamics of available litter compounds should affect microbial (fungal and bacterial) communities and their roles in litter substrate dynamics and ecosystem responses over time. We experimentally examined effects of differences in litter types produced by different fire regimes and litter loads (simulating wrack deposition) on microbial community composition and changes over time. We established replicated plots at similar elevations within frequent tidal-inundation zones of a coastal brackish Louisiana marsh. Plots were located within blocks with different prescribed fire regimes. We deployed different measured loads of new sterilized litter collected from zones in which plots were established, then re-measured litter masses at subsequent collection times. We used DNA sequencing to characterize microbial communities, indicator families, and inferred ecosystem functions in litter subsamples. Differences in fire regimes had large, similar effects on fungal and bacterial indicator families and community compositions and were associated with alternate trajectories of community development over time. Both microbial and plant community compositional patterns were associated with fire regimes, but in dissimilar ways. Differences in litter loads introduced differences in sediment accumulation associated with tidal inundation that may have affected microbial communities. Our study further suggests that fire regimes and tropical cyclones, in the context of frequent tidal inundation, may interactively generate substrate heterogeneities and alter microbial community composition, potentially modifying fine fuels and hence subsequent fires. Understanding microbial community compositional and functional responses to fire regimes and tropical cyclones should be useful in management of coastal marsh ecosystems.
Collapse
Affiliation(s)
- Viet Q Dao
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Crystal N Johnson
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - William J Platt
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
9
|
Berlow M, Mesa M, Creek M, Duarte JG, Carpenter E, Phinizy B, Andonian K, Dlugosch KM. Plant G × Microbial E: Plant Genotype Interaction with Soil Bacterial Community Shapes Rhizosphere Composition During Invasion. MICROBIAL ECOLOGY 2024; 87:113. [PMID: 39259393 PMCID: PMC11390927 DOI: 10.1007/s00248-024-02429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
It is increasingly recognized that different genetic variants of hosts can uniquely shape their microbiomes. Invasive species often evolve in their introduced ranges, but little is known about the potential for their microbial associations to change during invasion as a result. We asked whether host genotype (G), microbial environment (E), or their interaction (G × E) affected the composition and diversity of host-associated microbiomes in Centaurea solstitialis (yellow starthistle), a Eurasian plant that is known to have evolved novel genotypes and phenotypes and to have altered microbial interactions, in its severe invasion of CA, USA. We conducted an experiment in which native and invading plant genotypes were inoculated with native and invaded range soil microbial communities. We used amplicon sequencing to characterize rhizosphere bacteria in both the experiment and the field soils from which they were derived. We found that native and invading plant genotypes accumulated different microbial associations at the family level in each soil community, often counter to differences in family abundance between soil communities. Root associations with potentially beneficial Streptomycetaceae were particularly interesting, as these were more abundant in the invaded range field soil and accumulated on invading genotypes. We also found that bacterial diversity is higher in invaded soils, but that invading genotypes accumulated a lower diversity of bacteria and unique microbial composition in experimental inoculations, relative to native genotypes. Thus variation in microbial associations of invaders was driven by the interaction of plant G and microbial E, and rhizosphere microbial communities appear to change in composition in response to host evolution during invasion.
Collapse
Affiliation(s)
- Mae Berlow
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Miles Mesa
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Mikayla Creek
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jesse G Duarte
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Elizabeth Carpenter
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Brandon Phinizy
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Krikor Andonian
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
10
|
Chakrawal A, Lindahl BD, Manzoni S. Modelling optimal ligninolytic activity during plant litter decomposition. THE NEW PHYTOLOGIST 2024; 243:866-880. [PMID: 38343140 DOI: 10.1111/nph.19572] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 07/05/2024]
Abstract
A large fraction of plant litter comprises recalcitrant aromatic compounds (lignin and other phenolics). Quantifying the fate of aromatic compounds is difficult, because oxidative degradation of aromatic carbon (C) is a costly but necessary endeavor for microorganisms, and we do not know when gains from the decomposition of aromatic C outweigh energetic costs. To evaluate these tradeoffs, we developed a litter decomposition model in which the aromatic C decomposition rate is optimized dynamically to maximize microbial growth for the given costs of maintaining ligninolytic activity. We tested model performance against > 200 litter decomposition datasets collected from published literature and assessed the effects of climate and litter chemistry on litter decomposition. The model predicted a time-varying ligninolytic oxidation rate, which was used to calculate the lag time before the decomposition of aromatic C is initiated. Warmer conditions increased decomposition rates, shortened the lag time of aromatic C oxidation, and improved microbial C-use efficiency by decreasing the costs of oxidation. Moreover, a higher initial content of aromatic C promoted an earlier start of aromatic C decomposition under any climate. With this contribution, we highlight the application of eco-evolutionary approaches based on optimized microbial life strategies as an alternative parametrization scheme for litter decomposition models.
Collapse
Affiliation(s)
- Arjun Chakrawal
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, 10691, Stockholm, Sweden
| | - Björn D Lindahl
- Swedish University of Agricultural Sciences, Department of Soil and Environment, 75007, Uppsala, Sweden
| | - Stefano Manzoni
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
11
|
Yao B, Kong X, Tian K, Zeng X, Lu W, Pang L, Sun S, Tian X. Initial Litter Chemistry and UV Radiation Drive Chemical Divergence in Litter during Decomposition. Microorganisms 2024; 12:1535. [PMID: 39203377 PMCID: PMC11356187 DOI: 10.3390/microorganisms12081535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 09/03/2024] Open
Abstract
Litter's chemical complexity influences carbon (C) cycling during its decomposition. However, the chemical and microbial mechanisms underlying the divergence or convergence of chemical complexity under UV radiation remain poorly understood. Here, we conducted a 397-day field experiment using 13C cross-polarization magic-angle spinning nuclear magnetic resonance (13C-CPMAS NMR) to investigate the interactions among the initial chemistry, microbial communities, and UV radiation during decomposition. Our study found that the initial concentrations of O-substituted aromatic C, di-O-alkyl C, and O-alkyl C in Deschampsia caespitosa were higher than those in Kobresia tibetica. Litter's chemical composition exhibited divergent patterns based on the initial chemistry, UV radiation, and decay time. Specifically, D. caespitosa consistently displayed higher concentrations of di-O-alkyl C and O-alkyl C compared to K. tibetica, regardless of the UV exposure and decay time. Additionally, litter's chemical complexity was positively correlated with changes in the extracellular enzyme activities, particularly those involved in lignin, cellulose, and hemicellulose degradation, which accounted for 9%, 20%, and 4% of the variation in litter's chemical complexity, respectively. These findings highlighted the role of distinct microbial communities in decomposing different C components through catabolism, leading to chemical divergence in litter. During the early decomposition stages, oligotrophic Planctomycetes and Acidobacteria metabolized O-alkyl C and di-O-alkyl C under UV-blocking conditions. In contrast, copiotrophic Actinobacteria and Chytridiomycota utilized these components under UV radiation exposure, reflecting their ability to thrive under UV stress conditions due to their rapid growth strategies in environments rich in labile C. Our study revealed that the inherent differences in the initial O-alkyl C and di-O-alkyl C contributed to the chemical divergence, while UV radiation further influenced this divergence by shifting the microbial community composition from oligotrophic to copiotrophic species. Thus, differences in the initial litter chemistry, microbial community, and UV radiation affected the quantity and quality of plant-derived C during decomposition.
Collapse
Affiliation(s)
- Bei Yao
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (B.Y.); (K.T.); (X.Z.); (W.L.); (L.P.); (S.S.)
| | - Xiangshi Kong
- Key Laboratory for Ecotourism of Hunan Province, School of Tourism, Jishou University, Jishou 416000, China;
| | - Kai Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (B.Y.); (K.T.); (X.Z.); (W.L.); (L.P.); (S.S.)
| | - Xiaoyi Zeng
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (B.Y.); (K.T.); (X.Z.); (W.L.); (L.P.); (S.S.)
| | - Wenshuo Lu
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (B.Y.); (K.T.); (X.Z.); (W.L.); (L.P.); (S.S.)
| | - Lu Pang
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (B.Y.); (K.T.); (X.Z.); (W.L.); (L.P.); (S.S.)
| | - Shucun Sun
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (B.Y.); (K.T.); (X.Z.); (W.L.); (L.P.); (S.S.)
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (B.Y.); (K.T.); (X.Z.); (W.L.); (L.P.); (S.S.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Bernardin JR, Gray SM, Bittleston LS. Arthropod prey type drives decomposition rates and microbial community processes. Appl Environ Microbiol 2024; 90:e0039424. [PMID: 38916291 PMCID: PMC11267907 DOI: 10.1128/aem.00394-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Microbial communities perform various functions, many of which contribute to ecosystem-level nutrient cycling via decomposition. Factors influencing leaf detrital decomposition are well understood in terrestrial and aquatic ecosystems, but much less is known about arthropod detrital inputs. Here, we sought to infer how differences in arthropod detritus affect microbial-driven decomposition and community function in a carnivorous pitcher plant, Sarracenia purpurea. Using sterile mesh bags filled with different types of sterile arthropod prey, we assessed if prey type influenced the rate of decomposition in pitcher plants over 7 weeks. Additionally, we measured microbial community composition and function, including hydrolytic enzyme activity and carbon substrate use. When comparing decomposition rates, we found that ant and beetle prey with higher exoskeleton content lost less mass compared with fly prey. We observed the highest protease activity in the fly treatment, which had the lowest exoskeleton content. Additionally, we saw differences in the pH of the pitcher fluid, driven by the ant treatment which had the lowest pH. According to our results from 16S rRNA gene metabarcoding, prey treatments with the highest bacterial amplicon sequence variant (ASV) richness (ant and beetle) were associated with prey that lost a lower proportion of mass over the 7 weeks. Overall, arthropod detritus provides unique nutrient sources to decomposer communities, with different prey influencing microbial hydrolytic enzyme activity and composition. IMPORTANCE Microbial communities play pivotal roles in nutrient cycling via decomposition and nutrient transformation; however, it is often unclear how different substrates influence microbial activity and community composition. Our study highlights how different types of insects influence decomposition and, in turn, microbial composition and function. We use the aquatic pools found in a carnivorous pitcher plant as small, discrete ecosystems that we can manipulate and study independently. We find that some insect prey (flies) breaks down faster than others (beetles or ants) likely because flies contain more things that are easy for microbes to eat and derive essential nutrients from. This is also reflected in higher enzyme activity in the microbes decomposing the flies. Our work bridges a knowledge gap about how different substrates affect microbial decomposition, contributing to the broader understanding of ecosystem function in a nutrient cycling context.
Collapse
Affiliation(s)
| | - Sarah M. Gray
- Department of Biology-Ecology and Evolution, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
13
|
Yang S, Sun J, Wang C, Li S, Li Z, Luo W, Wei G, Chen W. Residue quality drives SOC sequestration by altering microbial taxonomic composition and ecophysiological function in desert ecosystem. ENVIRONMENTAL RESEARCH 2024; 250:118518. [PMID: 38382662 DOI: 10.1016/j.envres.2024.118518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Plant residues are important sources of soil organic carbon in terrestrial ecosystems. The degradation of plant residue by microbes can influence the soil carbon cycle and sequestration. However, little is known about the microbial composition and function, as well as the accumulation of soil organic carbon (SOC) in response to the inputs of different quality plant residues in the desert environment. The present study evaluated the effects of plant residue addition from Pinus sylvestris var. mongolica (Pi), Artemisia desertorum (Ar) and Amorpha fruticosa (Am) on desert soil microbial community composition and function in a field experiment in the Mu Us Desert. The results showed that the addition of the three plant residues with different C/N ratios induced significant variation in soil microbial communities. The Am treatment (low C/N ratio) improved microbial diversity compared with the Ar and Pi treatments (medium and high C/N ratios). The variations in the taxonomic and functional compositions of the dominant phyla Actinobacteria and Proteobacteria were higher than those of the other phyla among the different treatments. Moreover, the network links between Proteobacteria and other phyla and the CAZyme genes abundances from Proteobacteria increased with increasing residue C/N, whereas those decreased for Actinobacteria. The SOC content of the Am, Ar and Pi treatments increased by 45.73%, 66.54% and 107.99%, respectively, as compared to the original soil. The net SOC accumulation was positively correlated with Proteobacteria abundance and negatively correlated with Actinobacteria abundance. These findings showed that changing the initial quality of plant residue from low C/N to high C/N can result in shifts in taxonomic and functional composition from Actinobacteria to Proteobacteria, which favors SOC accumulation. This study elucidates the ecophysiological roles of Actinobacteria and Proteobacteria in the desert carbon cycle, expands our understanding of the potential microbial-mediated mechanisms by which plant residue inputs affect SOC sequestration in desert soils, and provides valuable guidance for species selection in desert vegetation reconstruction.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Jieyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Chang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Shuyue Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Zubing Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Wen Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China.
| |
Collapse
|
14
|
Liu J, Ding C, Teng C, Zhang W, Su X, Zhu W. Impacts of litter microbial community on litter decomposition in the absence of soil microorganisms. Appl Environ Microbiol 2024; 90:e0023924. [PMID: 38483156 PMCID: PMC11022580 DOI: 10.1128/aem.00239-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 04/18/2024] Open
Abstract
What is the effect of phyllosphere microorganisms on litter decomposition in the absence of colonization by soil microorganisms? Here, we simulated the litter standing decomposition stage in the field to study the differences in the composition and structure of the phyllosphere microbial community after the mixed decomposition of Populus × canadensis and Pinus sylvestris var. mongolica litter. After 15 months of mixed decomposition, we discovered that litters that were not in contact with soil had an antagonistic effect (the actual decomposition rate was 18.18%, which is lower than the expected decomposition rate) and the difference between the litters themselves resulted in a negative response to litter decomposition. In addition, there was no significant difference in bacterial and fungal community diversity after litter decomposition. The litter bacterial community was negatively responsive to litter properties and positively responsive to the fungal community. Importantly, we found that bacterial communities had a greater impact on litter decomposition than fungi. This study has enriched our understanding of the decomposition of litter itself and provided a theoretical basis for further exploring the "additive and non-additive effects" of litter decomposition and the mechanism of microbial drive. IMPORTANCE The study of litter decomposition mechanism plays an important role in the material circulation of the global ecosystem. However, previous studies have often looked at contact with soil as the starting point for decomposition. But actually, standing litter is very common in forest ecosystems. Therefore, we used field simulation experiments to simulate the decomposition of litters without contact with soil for 15 months, to explore the combined and non-added benefits of the decomposition of mixed litters, and to study the influence of microbial community composition on the decomposition rate while comparing the differences of microbial communities.
Collapse
Affiliation(s)
- Jiaying Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Chao Teng
- Liaoning Non-Ferrous Geological Exploration and Research Institute Co. Ltd., Shenyang, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
15
|
Leifheit EF, Camenzind T, Lehmann A, Andrade-Linares DR, Fussan M, Westhusen S, Wineberger TM, Rillig MC. Fungal traits help to understand the decomposition of simple and complex plant litter. FEMS Microbiol Ecol 2024; 100:fiae033. [PMID: 38486354 PMCID: PMC11022653 DOI: 10.1093/femsec/fiae033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/18/2024] Open
Abstract
Litter decomposition is a key ecosystem process, relevant for the release and storage of nutrients and carbon in soil. Soil fungi are one of the dominant drivers of organic matter decomposition, but fungal taxa differ substantially in their functional ability to decompose plant litter. Knowledge is mostly based on observational data and subsequent molecular analyses and in vitro studies have been limited to forest ecosystems. In order to better understand functional traits of saprotrophic soil fungi in grassland ecosystems, we isolated 31 fungi from a natural grassland and performed several in vitro studies testing for i) leaf and wood litter decomposition, ii) the ability to use carbon sources of differing complexity, iii) the enzyme repertoire. Decomposition strongly varied among phyla and isolates, with Ascomycota decomposing the most and Mucoromycota decomposing the least. The phylogeny of the fungi and their ability to use complex carbon were the most important predictors for decomposition. Our findings show that it is crucial to understand the role of individual members and functional groups within the microbial community. This is an important way forward to understand the role of microbial community composition for the prediction of litter decomposition and subsequent potential carbon storage in grassland soils.
Collapse
Affiliation(s)
- Eva F Leifheit
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin 14195, Germany
| | - Tessa Camenzind
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin 14195, Germany
| | - Anika Lehmann
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin 14195, Germany
| | - Diana R Andrade-Linares
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit for Comparative Microbiome Analyses – COMI, 85764 Neuherberg, Germany
| | - Max Fussan
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin 14195, Germany
| | - Sophia Westhusen
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany
| | - Till M Wineberger
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin 14195, Germany
| |
Collapse
|
16
|
Ndinga-Muniania C, Wornson N, Fulcher MR, Borer ET, Seabloom EW, Kinkel L, May G. Cryptic functional diversity within a grass mycobiome. PLoS One 2023; 18:e0287990. [PMID: 37471328 PMCID: PMC10358963 DOI: 10.1371/journal.pone.0287990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/17/2023] [Indexed: 07/22/2023] Open
Abstract
Eukaryotic hosts harbor tremendously diverse microbiomes that affect host fitness and response to environmental challenges. Fungal endophytes are prominent members of plant microbiomes, but we lack information on the diversity in functional traits affecting their interactions with their host and environment. We used two culturing approaches to isolate fungal endophytes associated with the widespread, dominant prairie grass Andropogon gerardii and characterized their taxonomic diversity using rDNA barcode sequencing. A randomly chosen subset of fungi representing the diversity of each leaf was then evaluated for their use of different carbon compound resources and growth on those resources. Applying community phylogenetic analyses, we discovered that these fungal endophyte communities are comprised of phylogenetically distinct assemblages of slow- and fast-growing fungi that differ in their use and growth on differing carbon substrates. Our results demonstrate previously undescribed and cryptic functional diversity in carbon resource use and growth in fungal endophyte communities of A. gerardii.
Collapse
Affiliation(s)
- Cedric Ndinga-Muniania
- Plant and Microbial Biology Graduate Program, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Nicholas Wornson
- School of Statistics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Michael R Fulcher
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture, Frederick, Maryland, United States of America
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eric W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Linda Kinkel
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Georgiana May
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
17
|
Semeraro S, Kipf P, Le Bayon RC, Rasmann S. Solar radiation explains litter degradation along alpine elevation gradients better than other climatic or edaphic parameters. Front Microbiol 2023; 14:1152187. [PMID: 37180240 PMCID: PMC10174231 DOI: 10.3389/fmicb.2023.1152187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Organic matter (OM) decomposition has been shown to vary across ecosystems, suggesting that variation in local ecological conditions influences this process. A better understanding of the ecological factors driving OM decomposition rates will allow to better predict the effect of ecosystem changes on the carbon cycle. While temperature and humidity have been put forward as the main drivers of OM decomposition, the concomitant role of other ecosystem properties, such as soil physicochemical properties, and local microbial communities, remains to be investigated within large-scale ecological gradients. To address this gap, we measured the decomposition of a standardized OM source - green tea and rooibos tea - across 24 sites spread within a full factorial design including elevation and exposition, and across two distinct bioclimatic regions in the Swiss Alps. By analyzing OM decomposition via 19 climatic, edaphic or soil microbial activity-related variables, which strongly varied across sites, we identified solar radiation as the primary source of variation of both green and rooibos teabags decomposition rate. This study thus highlights that while most variables, such as temperature or humidity, as well as soil microbial activity, do impact decomposition process, in combination with the measured pedo-climatic niche, solar radiation, very likely by means of indirect effects, best captures variation in OM degradation. For instance, high solar radiation might favor photodegradation, in turn speeding up the decomposition activity of the local microbial communities. Future work should thus disentangle the synergistic effects of the unique local microbial community and solar radiation on OM decomposition across different habitats.
Collapse
Affiliation(s)
- Sarah Semeraro
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | | | | | |
Collapse
|
18
|
Tanunchai B, Ji L, Schroeter SA, Wahdan SFM, Hossen S, Delelegn Y, Buscot F, Lehnert AS, Alves EG, Hilke I, Gleixner G, Schulze ED, Noll M, Purahong W. FungalTraits vs. FUNGuild: Comparison of Ecological Functional Assignments of Leaf- and Needle-Associated Fungi Across 12 Temperate Tree Species. MICROBIAL ECOLOGY 2023; 85:411-428. [PMID: 35124727 PMCID: PMC9958157 DOI: 10.1007/s00248-022-01973-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 05/16/2023]
Abstract
Recently, a new annotation tool "FungalTraits" was created based on the previous FUNGuild and FunFun databases, which has attracted high attention in the scientific community. These databases were widely used to gain more information from fungal sequencing datasets by assigning fungal functional traits. More than 1500 publications so far employed FUNGuild and the aim of this study is to compare this successful database with the recent FungalTraits database. Quality and quantity of the assignment by FUNGuild and FungalTraits to a fungal internal transcribed spacer (ITS)-based amplicon sequencing dataset on amplicon sequence variants (ASVs) were addressed. Sequencing dataset was derived from leaves and needles of 12 temperate broadleaved and coniferous tree species. We found that FungalTraits assigned more functional traits than FUNGuild, and especially the coverage of saprotrophs, plant pathogens, and endophytes was higher while lichenized fungi revealed similar findings. Moreover, ASVs derived from leaves and needles of each tree species were better assigned to all available fungal traits as well as to saprotrophs by FungalTraits compared to FUNGuild in particular for broadleaved tree species. Assigned ASV richness as well as fungal functional community composition was higher and more diverse after analyses with FungalTraits compared to FUNGuild. Moreover, datasets of both databases showed similar effect of environmental factors for saprotrophs but for endophytes, unidentical patterns of significant corresponding factors were obtained. As a conclusion, FungalTraits is superior to FUNGuild in assigning a higher quantity and quality of ASVs as well as a higher frequency of significant correlations with environmental factors.
Collapse
Affiliation(s)
- Benjawan Tanunchai
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Li Ji
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, 150040 Harbin, People’s Republic of China
| | - Simon Andreas Schroeter
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Sara Fareed Mohamed Wahdan
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522 Egypt
| | - Shakhawat Hossen
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Yoseph Delelegn
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Ann-Sophie Lehnert
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Eliane Gomes Alves
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Ines Hilke
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Gerd Gleixner
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Ernst-Detlef Schulze
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Matthias Noll
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
| |
Collapse
|
19
|
Xing R, Deng YF, Yao Y, Gao QB, Zhang FQ, Wang JL, Liu HR, Chen SL. Fine-scale genetic diversity and genet dynamics of the fairy ring fungus Floccularia luteovirens on the Qinghai–Tibet plateau. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Vesamäki JS, Nissinen R, Kainz MJ, Pilecky M, Tiirola M, Taipale SJ. Decomposition rate and biochemical fate of carbon from natural polymers and microplastics in boreal lakes. Front Microbiol 2022; 13:1041242. [PMID: 36425032 PMCID: PMC9679218 DOI: 10.3389/fmicb.2022.1041242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2023] Open
Abstract
Microbial mineralization of organic compounds is essential for carbon recycling in food webs. Microbes can decompose terrestrial recalcitrant and semi-recalcitrant polymers such as lignin and cellulose, which are precursors for humus formation. In addition to naturally occurring recalcitrant substrates, microplastics have been found in various aquatic environments. However, microbial utilization of lignin, hemicellulose, and microplastics as carbon sources in freshwaters and their biochemical fate and mineralization rate in freshwaters is poorly understood. To fill this knowledge gap, we investigated the biochemical fate and mineralization rates of several natural and synthetic polymer-derived carbon in clear and humic lake waters. We used stable isotope analysis to unravel the decomposition processes of different 13C-labeled substrates [polyethylene, polypropylene, polystyrene, lignin/hemicellulose, and leaves (Fagus sylvatica)]. We also used compound-specific isotope analysis and molecular biology to identify microbes associated with used substrates. Leaves and hemicellulose were rapidly decomposed compared to microplastics which were degraded slowly or below detection level. Furthermore, aromatic polystyrene was decomposed faster than aliphatic polyethylene and polypropylene. The major biochemical fate of decomposed substrate carbon was in microbial biomass. Bacteria were the main decomposers of all studied substrates, whereas fungal contribution was poor. Bacteria from the family Burkholderiaceae were identified as potential leaf and polystyrene decomposers, whereas polypropylene and polyethylene were not decomposed.
Collapse
Affiliation(s)
- Jussi S. Vesamäki
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Riitta Nissinen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Martin J. Kainz
- WasserCluster Lunz—Biological Station, Donau-Universität Krems, Lunz am See, Austria
| | - Matthias Pilecky
- WasserCluster Lunz—Biological Station, Donau-Universität Krems, Lunz am See, Austria
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Sami J. Taipale
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
21
|
Brabcová V, Tláskal V, Lepinay C, Zrůstová P, Eichlerová I, Štursová M, Müller J, Brandl R, Bässler C, Baldrian P. Fungal Community Development in Decomposing Fine Deadwood Is Largely Affected by Microclimate. Front Microbiol 2022; 13:835274. [PMID: 35495708 PMCID: PMC9045801 DOI: 10.3389/fmicb.2022.835274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Fine woody debris (FWD) represents the majority of the deadwood stock in managed forests and serves as an important biodiversity hotspot and refuge for many organisms, including deadwood fungi. Wood decomposition in forests, representing an important input of nutrients into forest soils, is mainly driven by fungal communities that undergo continuous changes during deadwood decomposition. However, while the assembly processes of fungal communities in long-lasting coarse woody debris have been repeatedly explored, similar information for the more ephemeral habitat of fine deadwood is missing. Here, we followed the fate of FWD of Fagus sylvatica and Abies alba in a Central European forest to describe the assembly and diversity patterns of fungal communities over 6 years. Importantly, the effect of microclimate on deadwood properties and fungal communities was addressed by comparing FWD decomposition in closed forests and under open canopies because the large surface-to-volume ratio of FWD makes it highly sensitive to temperature and moisture fluctuations. Indeed, fungal biomass increases and pH decreases were significantly higher in FWD under closed canopy in the initial stages of decomposition indicating higher fungal activity and hence decay processes. The assembly patterns of the fungal community were strongly affected by both tree species and microclimatic conditions. The communities in the open/closed canopies and in each tree species were different throughout the whole succession with only limited convergence in time in terms of both species and ecological guild composition. Decomposition under the open canopy was characterized by high sample-to-sample variability, showing the diversification of fungal resources. Tree species-specific fungi were detected among the abundant species mostly during the initial decomposition, whereas fungi associated with certain canopy cover treatments were present evenly during decomposition. The species diversity of forest stands and the variability in microclimatic conditions both promote the diversity of fine woody debris fungi in a forest.
Collapse
Affiliation(s)
- Vendula Brabcová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Clémentine Lepinay
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Zrůstová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Eichlerová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martina Štursová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jörg Müller
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany.,Bavarian Forest National Park, Grafenau, Germany
| | - Roland Brandl
- Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Claus Bässler
- Bavarian Forest National Park, Grafenau, Germany.,Department of Conservation Biology, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
22
|
Jia T, Liang X, Guo T, Wu T, Chai B. Bacterial community succession and influencing factors for Imperata cylindrica litter decomposition in a copper tailings area of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152908. [PMID: 34999068 DOI: 10.1016/j.scitotenv.2021.152908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Litter decomposition is a critical component of the ecological nutritional transformation process. In a copper mining area, the litter from Imperata cylindrica is the major indicator for restoring heavy metal-polluted copper mining lands. Large amounts of litter are generated at the end of the plant growing season during the process of vegetation restoration in copper mining areas, and the microbial dynamics play an important role in soil nutrient turnover during the decomposition of litter. Investigating the characteristics and interactions of bacterial communities during litter decomposition will clarify the driving mechanisms of organic matter and nutrient cycling in copper mining areas that harbor contaminated soils. Here, we report the results of an in situ decomposition experiment that lasted for a total of 460 days from three of the 16 copper mining subdams with heavy metal pollution and different phytoremediation histories (e.g., 50, 22 and 5 years) to explore the bacterial communities as the driving factors of litter decomposition. The total carbon contents of the litter decreased by 62.6% and 71.5% in the decomposition process at those sites with phytoremediation histories of 50 and 22 years (S516 and S536), respectively, but decreased by only 25.8% at the site with a phytoremediation history of 5 years (S560). The optimal C/N ratios in the three different restoration stages varied and were 65.5, 86.7 and 39.3 in S516, S536, S560, respectively. Litter decomposition enriched the heavy metal contents such as cadmium, copper (Cu), lead and zinc (P < 0.05) in litter. Proteobacteria and Actinobacteriota were the dominant bacterial phyla during the different litter decomposition stages, which accounted for 91.66% of the relative abundances in the bacterial communities. Moreover, the role of Friedmanniella, which had the highest betweenness centrality (BC) value, was critical in sustaining both the structure and function of the bacterial communities during the early decomposition stage. However, Quadrisphaera, with the maximum BC value (1074.8), became the dominant genus as litter decomposition progressed. The most crucial factors that affected the litter bacterial communities were the litter pH and copper contents. The obtained results will be helpful to provide a further understanding of litter decomposition mechanisms and will provide a scientific basis for improving the effectiveness of material circulation and nutrient transformation in degraded copper mining ecosystems.
Collapse
Affiliation(s)
- Tong Jia
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| | - Xiaoxia Liang
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Tingyan Guo
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Tihang Wu
- Department of Biology, Georgia Southern University, Statesboro, GA 30460-8042, USA
| | - Baofeng Chai
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
23
|
Liber JA, Minier DH, Stouffer-Hopkins A, Van Wyk J, Longley R, Bonito G. Maple and hickory leaf litter fungal communities reflect pre-senescent leaf communities. PeerJ 2022; 10:e12701. [PMID: 35127279 PMCID: PMC8801177 DOI: 10.7717/peerj.12701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023] Open
Abstract
Fungal communities are known to contribute to the functioning of living plant microbiomes as well as to the decay of dead plant material and affect vital ecosystem services, such as pathogen resistance and nutrient cycling. Yet, factors that drive structure and function of phyllosphere mycobiomes and their fate in leaf litter are often ignored. We sought to determine the factors contributing to the composition of communities in temperate forest substrates, with culture-independent amplicon sequencing of fungal communities of pre-senescent leaf surfaces, internal tissues, leaf litter, underlying humus soil of co-occurring red maple (Acer rubrum) and shagbark hickory (Carya ovata). Paired samples were taken at five sites within a temperate forest in southern Michigan, USA. Fungal communities were differentiable based on substrate, host species, and site, as well as all two-way and three-way interactions of these variables. PERMANOVA analyses and co-occurrence of taxa indicate that soil communities are unique from both phyllosphere and leaf litter communities. Correspondence of endophyte, epiphyte, and litter communities suggests dispersal plays an important role in structuring fungal communities. Future work will be needed to assess how this dispersal changes microbial community functioning in these niches.
Collapse
Affiliation(s)
- Julian A. Liber
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States
- Department of Biology, Duke University, Durham, North Carolina, United States
| | - Douglas H. Minier
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States
| | - Anna Stouffer-Hopkins
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States
| | - Judson Van Wyk
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States
| | - Reid Longley
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States
| | - Gregory Bonito
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
24
|
Liao C, Long C, Zhang Q, Cheng X. Stronger effect of litter quality than micro‐organisms on leaf and root litter C and N loss at different decomposition stages following a subtropical land use change. Funct Ecol 2022. [DOI: 10.1111/1365-2435.13999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chang Liao
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province School of Ecology and Environmental Science Yunnan University Kunming China
| | - Chunyan Long
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province School of Ecology and Environmental Science Yunnan University Kunming China
| | - Qian Zhang
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province School of Ecology and Environmental Science Yunnan University Kunming China
| | - Xiaoli Cheng
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province School of Ecology and Environmental Science Yunnan University Kunming China
| |
Collapse
|
25
|
Lebreton A, Zeng Q, Miyauchi S, Kohler A, Dai YC, Martin FM. Evolution of the Mode of Nutrition in Symbiotic and Saprotrophic Fungi in Forest Ecosystems. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-114902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this review, we highlight the main insights that have been gathered from recent developments using large-scale genomics of fungal saprotrophs and symbiotrophs (including ectomycorrhizal and orchid and ericoid mycorrhizal fungi) inhabiting forest ecosystems. After assessing the goals and motivations underlying our approach, we explore our current understanding of the limits and future potential of using genomics to understand the ecological roles of these forest fungi. Comparative genomics unraveled the molecular machineries involved in lignocellulose decomposition in wood decayers, soil and litter saprotrophs, and mycorrhizal symbionts. They also showed that transitions from saprotrophy to mutualism entailed widespread losses of lignocellulose-degrading enzymes; diversification of novel, lineage-specific symbiosis-induced genes; and convergent evolution of genetic innovations that facilitate the accommodationof mutualistic symbionts within their plant hosts. We also identify the major questions that remain unanswered and propose new avenues of genome-based research to understand the role of soil fungi in sustainable forest ecosystems.
Collapse
Affiliation(s)
- Annie Lebreton
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| | - Qingchao Zeng
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
| | - Shingo Miyauchi
- Max Planck Institute for Plant Breeding Research, Department of Plant–Microbe Interactions, Köln, Germany, D-50829
| | - Annegret Kohler
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| | - Yu-Cheng Dai
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
| | - Francis M. Martin
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| |
Collapse
|
26
|
Oberle B, Breithaupt J, McTigue AM, Stryker R, Cladas M, Raulerson G, Young DF. Restoration objectives create surface carbon cycle trade‐offs in coastal habitats. Restor Ecol 2021. [DOI: 10.1111/rec.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brad Oberle
- Division of Natural Sciences New College of Florida Sarasota FL 34243 U.S.A
| | - Joshua Breithaupt
- Department of Biology University of Central Florida Orlando FL 32816 U.S.A
- Coastal and Marine Laboratory Florida State University St. Teresa FL 32358 U.S.A
| | - Angela M. McTigue
- Division of Natural Sciences New College of Florida Sarasota FL 34243 U.S.A
| | - Race Stryker
- Division of Natural Sciences New College of Florida Sarasota FL 34243 U.S.A
| | - Misty Cladas
- Tampa Bay Estuary Program St. Petersburg FL 33701 U.S.A
| | | | | |
Collapse
|
27
|
Broadbent AAD, Bahn M, Pritchard WJ, Newbold LK, Goodall T, Guinta A, Snell HSK, Cordero I, Michas A, Grant HK, Soto DX, Kaufmann R, Schloter M, Griffiths RI, Bardgett RD. Shrub expansion modulates belowground impacts of changing snow conditions in alpine grasslands. Ecol Lett 2021; 25:52-64. [PMID: 34708508 DOI: 10.1111/ele.13903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
Climate change is disproportionately impacting mountain ecosystems, leading to large reductions in winter snow cover, earlier spring snowmelt and widespread shrub expansion into alpine grasslands. Yet, the combined effects of shrub expansion and changing snow conditions on abiotic and biotic soil properties remains poorly understood. We used complementary field experiments to show that reduced snow cover and earlier snowmelt have effects on soil microbial communities and functioning that persist into summer. However, ericaceous shrub expansion modulates a number of these impacts and has stronger belowground effects than changing snow conditions. Ericaceous shrub expansion did not alter snow depth or snowmelt timing but did increase the abundance of ericoid mycorrhizal fungi and oligotrophic bacteria, which was linked to decreased soil respiration and nitrogen availability. Our findings suggest that changing winter snow conditions have cross-seasonal impacts on soil properties, but shifts in vegetation can modulate belowground effects of future alpine climate change.
Collapse
Affiliation(s)
- Arthur A D Broadbent
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Michael Bahn
- Institut für Ökologie, Universität Innsbruck, Innsbruck, Austria
| | - William J Pritchard
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | | | - Tim Goodall
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
| | - Andrew Guinta
- Institut für Ökologie, Universität Innsbruck, Innsbruck, Austria
| | - Helen S K Snell
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Irene Cordero
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Antonios Michas
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany.,Chair for Soil Science, Technical University of Munich, Freising, Germany
| | - Helen K Grant
- National Environmental Isotope Facility, UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK
| | - David X Soto
- National Environmental Isotope Facility, UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK
| | - Rüdiger Kaufmann
- Institut für Ökologie, Universität Innsbruck, Innsbruck, Austria
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany.,Chair for Soil Science, Technical University of Munich, Freising, Germany
| | - Robert I Griffiths
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Gwynedd, UK
| | - Richard D Bardgett
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
28
|
Fu YM, Zhang XY, Qi DD, Feng FJ. Changes in leaf litter decomposition of primary Korean pine forests after degradation succession into secondary broad-leaved forests. Ecol Evol 2021; 11:12335-12348. [PMID: 34594503 PMCID: PMC8462155 DOI: 10.1002/ece3.7903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/12/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022] Open
Abstract
Forest degradation succession often leads to changes in forest ecosystem functioning. Exactly how the decomposition of leaf litter is affected in a disturbed forest remains unknown. Therefore, in our study, we selected a primary Korean pine forest (PK) and a secondary broad-leaved forest (SF) affected by clear-cutting degradation, both in Northeast China. The aim was to explore the response to changes in the leaf litter decomposition converting PK to SF. The mixed litters of PK and SF were decomposed in situ (1 year). The proportion of remaining litter mass, main chemistry, and soil biotic and abiotic factors were assessed during decomposition, and then, we made an in-depth analysis of the changes in the leaf litter decomposition. According to our results, leaf litter decomposition rate was significantly higher in the PK than that in the SF. Overall, the remaining percent mass of leaf litter's main chemical quality in SF was higher than in PK, indicating that leaf litter chemical turnover in PK was relatively faster. PK had a significantly higher amount of total phospholipid fatty acids (PLFAs) than SF during decomposition. Based on multivariate regression trees, the forest type influenced the soil habitat factors related to leaf litter decomposition more than decomposition time. Structural equation modeling revealed that litter N was strongly and positively affecting litter decomposition, and the changes in actinomycetes PLFA biomass played a more important role among all the functional groups. Selected soil abiotic factors were indirectly driving litter decomposition through coupling with actinomycetes. This study provides evidence for the complex interactions between leaf litter substrate and soil physical-chemical properties in affecting litter decomposition via soil microorganisms.
Collapse
Affiliation(s)
- Yan-Mei Fu
- School of Life Sciences Northeast Forestry University Harbin China
- Key Laboratory of Wetland Ecology and Environment Northeast Institute of Geography and Agroecology Chinese Academy Sciences Changchun China
| | - Xiu-Yue Zhang
- School of Life Sciences Northeast Forestry University Harbin China
| | - Dan-Dan Qi
- School of Life Sciences Northeast Forestry University Harbin China
| | - Fu-Juan Feng
- School of Life Sciences Northeast Forestry University Harbin China
| |
Collapse
|
29
|
Broadbent AAD, Snell HSK, Michas A, Pritchard WJ, Newbold L, Cordero I, Goodall T, Schallhart N, Kaufmann R, Griffiths RI, Schloter M, Bahn M, Bardgett RD. Climate change alters temporal dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt. ISME JOURNAL 2021; 15:2264-2275. [PMID: 33619353 DOI: 10.1038/s41396-021-00922-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/30/2022]
Abstract
Soil microbial communities regulate global biogeochemical cycles and respond rapidly to changing environmental conditions. However, understanding how soil microbial communities respond to climate change, and how this influences biogeochemical cycles, remains a major challenge. This is especially pertinent in alpine regions where climate change is taking place at double the rate of the global average, with large reductions in snow cover and earlier spring snowmelt expected as a consequence. Here, we show that spring snowmelt triggers an abrupt transition in the composition of soil microbial communities of alpine grassland that is closely linked to shifts in soil microbial functioning and biogeochemical pools and fluxes. Further, by experimentally manipulating snow cover we show that this abrupt seasonal transition in wide-ranging microbial and biogeochemical soil properties is advanced by earlier snowmelt. Preceding winter conditions did not change the processes that take place during snowmelt. Our findings emphasise the importance of seasonal dynamics for soil microbial communities and the biogeochemical cycles that they regulate. Moreover, our findings suggest that earlier spring snowmelt due to climate change will have far reaching consequences for microbial communities and nutrient cycling in these globally widespread alpine ecosystems.
Collapse
Affiliation(s)
- Arthur A D Broadbent
- Department of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - Helen S K Snell
- Department of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Antonios Michas
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair for Soil Science, Technical University of Munich, Emil-Ramann-Str 2, 85354, Freising, Germany
| | - William J Pritchard
- Department of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Lindsay Newbold
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Irene Cordero
- Department of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Tim Goodall
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Nikolaus Schallhart
- Faculty of Biology, University of Innsbruck, Sternwartestr. 15, Innsbruck, Austria
| | - Ruediger Kaufmann
- Department of Ecology, University of Innsbruck, Technikerstr. 25, Innsbruck, Austria
| | - Robert I Griffiths
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair for Soil Science, Technical University of Munich, Emil-Ramann-Str 2, 85354, Freising, Germany
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Sternwartestr. 15, Innsbruck, Austria
| | - Richard D Bardgett
- Department of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
30
|
Wang L, Chen Y, Zhou Y, Zheng H, Xu Z, Tan B, You C, Zhang L, Li H, Guo L, Wang L, Huang Y, Zhang J, Liu Y. Litter chemical traits strongly drove the carbon fractions loss during decomposition across an alpine treeline ecotone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142287. [PMID: 33207458 DOI: 10.1016/j.scitotenv.2020.142287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The decomposition of litter carbon (C) fraction is a major determinant of soil organic matter pool and nutrient cycling. However, knowledge of litter chemical traits regulate C fractions release is still relatively limited. A litterbag experiment was conducted using six plant functional litter types at two vegetation type (coniferous forest and alpine shrubland) in a treeline ecotone. We evaluated the relative importance of litter chemistry (i.e. Nutrient, C quality, and stoichiometry) on the loss of litter mass, non-polar extractables (NPE), water-soluble extractables (WSE), acid-hydrolyzable carbohydrates (ACID), and acid-unhydrolyzable residue (AUR) during decomposition. Litter nutrients contain nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), aluminium (Al), manganese (Mn), zinc (Zn), iron (Fe) and copper (Cu), litter C quality contains C, WSE, NPE, ACID, and AUR, and stoichiometry was defined by C:N, C:P; N:P, ACID:N, and AUR:N. The results showed single exponential model fitted decomposition rates of litter mass and C fractions better than double exponential or asymptotic decomposition, and the decomposition rates of C fractions were strongly correlated with initial litter nutrients, especially K, Na, Ca. Furthermore, the temporal dynamics of litter nutrients (Ca, Mg, Na, K, Zn, and Fe) strongly regulated C fractions loss during the decomposition process. Changes in litter C quality had an evident effect on the degradation of ACID and AUR, supporting the concept of "priming effect" of soluble carbon fraction. The significant differences were found in the release of NPE, WSE, and ACID rather than AUR among coniferous forest and alpine shrubland, and the vegetation type effects largely depend on the changes in litter stoichiometry, which is an important implication for the change in plant community abundance regulate decay. Collectively, elucidating the hierarchical drivers of litter chemistry on decomposition is critical to soil C sequestration in alpine ecosystems.
Collapse
Affiliation(s)
- Lifeng Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yamei Chen
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong, Sichuan 637009, China
| | - Yu Zhou
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Haifeng Zheng
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Zhenfeng Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Tan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengming You
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Han Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Guo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Youyou Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong, Sichuan 637009, China
| | - Jian Zhang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
31
|
Ma Y, Huang S, Gan Z, Xiong Y, Cai R, Liu Y, Wu L, Ge G. The succession of bacterial and fungal communities during decomposition of two hygrophytes in a freshwater lake wetland. Ecosphere 2020. [DOI: 10.1002/ecs2.3242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yantian Ma
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| | - Shihao Huang
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| | - Zhiwei Gan
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| | - Yong Xiong
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| | - Runfa Cai
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| | - Yajun Liu
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| | - Lan Wu
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| | - Gang Ge
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| |
Collapse
|
32
|
Long-term decomposition of litter in the montane forest and the definition of fungal traits in the successional space. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100913] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Vivelo S, Bhatnagar JM. An evolutionary signal to fungal succession during plant litter decay. FEMS Microbiol Ecol 2020; 95:5565043. [PMID: 31574146 PMCID: PMC6772037 DOI: 10.1093/femsec/fiz145] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Ecologists have frequently observed a pattern of fungal succession during litter decomposition, wherein different fungal taxa dominate different stages of decay in individual ecosystems. However, it is unclear which biological features of fungi give rise to this pattern. We tested a longstanding hypothesis that fungal succession depends on the evolutionary history of species, such that different fungal phyla prefer different decay stages. To test this hypothesis, we performed a meta-analysis across studies in 22 different ecosystem types to synthesize fungal decomposer abundances at early, middle and late stages of plant litter decay. Fungal phyla varied in relative abundance throughout decay, with fungi in the Ascomycota reaching highest relative abundance during early stages of decay (P < 0.001) and fungi in the Zygomycota reaching highest relative abundance during late stages of decay (P < 0.001). The best multiple regression model to explain variation in abundance of these fungal phyla during decay included decay stage, as well as plant litter type and climate factors. Most variation in decay-stage preference of fungal taxa was observed at basal taxonomic levels (phylum and class) rather than finer taxonomic levels (e.g. genus). For many finer-scale taxonomic groups and functional groups of fungi, plant litter type and climate factors were better correlates with relative abundance than decay stage per se, suggesting that the patchiness of fungal community composition in space is related to both resource and climate niches of different fungal taxa. Our study indicates that decomposer fungal succession is partially rooted in fungal decomposers’ deep evolutionary history, traceable to the divergence among phyla.
Collapse
Affiliation(s)
- Sasha Vivelo
- Dept. of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
34
|
Community-level signatures of ecological succession in natural bacterial communities. Nat Commun 2020; 11:2386. [PMID: 32404904 PMCID: PMC7220908 DOI: 10.1038/s41467-020-16011-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/24/2020] [Indexed: 11/08/2022] Open
Abstract
A central goal in microbial ecology is to simplify the extraordinary biodiversity that inhabits natural environments into ecologically coherent units. We profiled (16S rRNA sequencing) > 700 semi-aquatic bacterial communities while measuring their functional capacity when grown in laboratory conditions. This approach allowed us to investigate the relationship between composition and function excluding confounding environmental factors. Simulated data allowed us to reject the hypothesis that stochastic processes were responsible for community assembly, suggesting that niche effects prevailed. Consistent with this idea we identified six distinct community classes that contained samples collected from distant locations. Structural equation models showed there was a functional signature associated with each community class. We obtained a more mechanistic understanding of the classes using metagenomic predictions (PiCRUST). This approach allowed us to show that the classes contained distinct genetic repertoires reflecting community-level ecological strategies. The ecological strategies resemble the classical distinction between r- and K-strategists, suggesting that bacterial community assembly may be explained by simple ecological mechanisms.
Collapse
|
35
|
Nuccio EE, Starr E, Karaoz U, Brodie EL, Zhou J, Tringe SG, Malmstrom RR, Woyke T, Banfield JF, Firestone MK, Pett-Ridge J. Niche differentiation is spatially and temporally regulated in the rhizosphere. THE ISME JOURNAL 2020; 14:999-1014. [PMID: 31953507 PMCID: PMC7082339 DOI: 10.1038/s41396-019-0582-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/28/2019] [Accepted: 12/18/2019] [Indexed: 01/14/2023]
Abstract
The rhizosphere is a hotspot for microbial carbon transformations, and is the entry point for root polysaccharides and polymeric carbohydrates that are important precursors to soil organic matter (SOM). However, the ecological mechanisms that underpin rhizosphere carbohydrate depolymerization are poorly understood. Using Avena fatua, a common annual grass, we analyzed time-resolved metatranscriptomes to compare microbial functions in rhizosphere, detritusphere, and combined rhizosphere-detritusphere habitats. Transcripts were binned using a unique reference database generated from soil isolate genomes, single-cell amplified genomes, metagenomes, and stable isotope probing metagenomes. While soil habitat significantly affected both community composition and overall gene expression, the succession of microbial functions occurred at a faster time scale than compositional changes. Using hierarchical clustering of upregulated decomposition genes, we identified four distinct microbial guilds populated by taxa whose functional succession patterns suggest specialization for substrates provided by fresh growing roots, decaying root detritus, the combination of live and decaying root biomass, or aging root material. Carbohydrate depolymerization genes were consistently upregulated in the rhizosphere, and both taxonomic and functional diversity were highest in the combined rhizosphere-detritusphere, suggesting coexistence of rhizosphere guilds is facilitated by niche differentiation. Metatranscriptome-defined guilds provide a framework to model rhizosphere succession and its consequences for soil carbon cycling.
Collapse
Affiliation(s)
- Erin E Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94551, USA.
| | - Evan Starr
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Ulas Karaoz
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eoin L Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, USA
| | - Jizhong Zhou
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Susannah G Tringe
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Rex R Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Jillian F Banfield
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, USA
| | - Mary K Firestone
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94551, USA.
| |
Collapse
|
36
|
Barbi F, Kohler A, Barry K, Baskaran P, Daum C, Fauchery L, Ihrmark K, Kuo A, LaButti K, Lipzen A, Morin E, Grigoriev IV, Henrissat B, Lindahl BD, Martin F. Fungal ecological strategies reflected in gene transcription ‐ a case study of two litter decomposers. Environ Microbiol 2019; 22:1089-1103. [DOI: 10.1111/1462-2920.14873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/23/2019] [Accepted: 11/20/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Florian Barbi
- Department of Soil and Environment Swedish University of Agricultural Sciences Box 7014, SE‐750 07 Uppsala Sweden
| | - Annegret Kohler
- Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand‐Est Université de Lorraine, INRA, UMR Interactions Arbres/Microorganismes (IAM) 54280 Champenoux France
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute Walnut Creek CA 94598 USA
| | - Preetisri Baskaran
- Department of Ecology Swedish University of Agricultural Sciences Box 7044, SE‐750 07 Uppsala Sweden
| | - Chris Daum
- US Department of Energy Joint Genome Institute Walnut Creek CA 94598 USA
| | - Laure Fauchery
- Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand‐Est Université de Lorraine, INRA, UMR Interactions Arbres/Microorganismes (IAM) 54280 Champenoux France
| | - Katarina Ihrmark
- Department of Forest Mycology and Plant Pathology Swedish University of Agricultural Sciences Box 7026, 750 07 Uppsala Sweden
| | - Alan Kuo
- US Department of Energy Joint Genome Institute Walnut Creek CA 94598 USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute Walnut Creek CA 94598 USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute Walnut Creek CA 94598 USA
| | - Emmanuelle Morin
- Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand‐Est Université de Lorraine, INRA, UMR Interactions Arbres/Microorganismes (IAM) 54280 Champenoux France
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute Walnut Creek CA 94598 USA
- Department of Plant and Microbial Biology University of California, Berkeley Berkeley CA 94720 USA
| | - Bernard Henrissat
- CNRS UMR 7257, Aix‐Marseille University 13288 Marseille France
- INRA, USC 1408 AFMB 13288 Marseille France
- Department of Biological Sciences King Abdulaziz University Jeddah Saudi Arabia
| | - Björn D. Lindahl
- Department of Soil and Environment Swedish University of Agricultural Sciences Box 7014, SE‐750 07 Uppsala Sweden
| | - Francis Martin
- Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand‐Est Université de Lorraine, INRA, UMR Interactions Arbres/Microorganismes (IAM) 54280 Champenoux France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Beijing Forestry University 35 Qinghua East Road, Haidian Qu Beijing Shi 100083 China
| |
Collapse
|
37
|
Gora EM, Lucas JM. Dispersal and nutrient limitations of decomposition above the forest floor: Evidence from experimental manipulations of epiphytes and macronutrients. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Evan M. Gora
- Department of Biology University of Louisville Louisville KY USA
| | - Jane M. Lucas
- Department of Soil and Water Systems University of Idaho Moscow ID USA
| |
Collapse
|
38
|
Morel AC, Adu Sasu M, Adu-Bredu S, Quaye M, Moore C, Ashley Asare R, Mason J, Hirons M, McDermott CL, Robinson EJZ, Boyd E, Norris K, Malhi Y. Carbon dynamics, net primary productivity and human-appropriated net primary productivity across a forest-cocoa farm landscape in West Africa. GLOBAL CHANGE BIOLOGY 2019; 25:2661-2677. [PMID: 31006150 DOI: 10.1111/gcb.14661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Terrestrial net primary productivity (NPP) is an important metric of ecosystem functioning; however, there are little empirical data on the NPP of human-modified ecosystems, particularly smallholder, perennial crops like cocoa (Theobroma cacao), which are extensive across the tropics. Human-appropriated NPP (HANPP) is a measure of the proportion of a natural system's NPP that has either been reduced through land-use change or harvested directly and, previously, has been calculated to estimate the scale of the human impact on the biosphere. Additionally, human modification can create shifts in NPP allocation and decomposition, with concomitant impacts on the carbon cycle. This study presents the results of 3 years of intensive monitoring of forest and smallholder cocoa farms across disturbance, management intensity, distance from forest and farm age gradients. We measured among the highest reported NPP values in tropical forest, 17.57 ± 2.1 and 17.7 ± 1.6 Mg C ha-1 year-1 for intact and logged forest, respectively; however, the average NPP of cocoa farms was still higher, 18.8 ± 2.5 Mg C ha-1 year-1 , which we found was driven by cocoa pod production. We found a dramatic shift in litterfall residence times, where cocoa leaves decomposed more slowly than forest leaves and shade tree litterfall decomposed considerably faster, indicating significant changes in rates of nutrient cycling. The average HANPP value for all cocoa farms was 2.1 ± 1.1 Mg C ha-1 year-1 ; however, depending on the density of shade trees, it ranged from -4.6 to 5.2 Mg C ha-1 year-1 . Therefore, rather than being related to cocoa yield, HANPP was reduced by maintaining higher shade levels. Across our monitored farms, 18.9% of farm NPP was harvested (i.e., whole cocoa pods) and only 1.1% (i.e., cocoa beans) was removed from the system, suggesting that the scale of HANPP in smallholder cocoa agroforestry systems is relatively small.
Collapse
Affiliation(s)
- Alexandra C Morel
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Institute of Zoology, Zoological Society of London, London, UK
| | | | | | - Marvin Quaye
- Nature Conservation Research Centre, Accra, Ghana
| | - Christine Moore
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | | | - John Mason
- Nature Conservation Research Centre, Accra, Ghana
| | - Mark Hirons
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Constance L McDermott
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | | | - Emily Boyd
- Lund University Centre for Sustainability Studies, Lund, Sweden
| | - Ken Norris
- Institute of Zoology, Zoological Society of London, London, UK
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Microbial Composition and Wood Decomposition Rates Vary with Microclimate From the Ground to the Canopy in a Tropical Forest. Ecosystems 2019. [DOI: 10.1007/s10021-019-00359-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Baldrian P. The known and the unknown in soil microbial ecology. FEMS Microbiol Ecol 2019; 95:5281230. [DOI: 10.1093/femsec/fiz005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/08/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220 Praha 4, Czech Republic
| |
Collapse
|
41
|
Van Nuland ME, Ware IM, Bailey JK, Schweitzer JA. Ecosystem feedbacks contribute to geographic variation in plant–soil eco‐evolutionary dynamics across a fertility gradient. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13259] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Ian M. Ware
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Joseph K. Bailey
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| |
Collapse
|