1
|
Finger Higgens RA, Hoover DL, Knight AC, Schlaepfer DR, Duniway MC. Flexible Phenology of a C 4 Grass Linked to Resiliency to Seasonal and Multiyear Drought Events in the American Southwest. Ecol Evol 2025; 15:e71435. [PMID: 40370350 PMCID: PMC12077930 DOI: 10.1002/ece3.71435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
Rising temperatures are predicted to further limit dryland water availability as droughts become more intense and frequent and seasonal precipitation patterns shift. Vegetation drought stress may increase mortality and cause declines and delays in phenological events, thereby impacting species' capacity to persist and recover from extreme drought conditions. We compare phenological responses of two common dryland perennial grass species, Achnatherum hymenoides (C3) and Pleuraphis jamesii (C4), to 4 years of experimentally imposed precipitation drought treatments (cool season, warm season, ambient), followed by 2 years of recovery on the Colorado Plateau, United States of America. Tagged individual grasses from both species were monitored biweekly and assessed for phenological metrics and mortality. The C3 grass exhibited less phenological flexibility to both seasonal and interannual drought conditions and experienced high rates of mortality, thus reducing resiliency. Conversely, the C4 grass showed more phenological plasticity during imposed drought treatments, with treatment effects diminishing in the two-year recovery period during a severe ambient drought. Synthesis: Results suggest that plant photosynthetic strategies may impact plant resistance and resiliency to drought. Here, C3 grass populations may decline, potentially shifting cool dryland ecosystems into a system comprised predominantly of warm-season adapted species.
Collapse
Affiliation(s)
| | - David L. Hoover
- USDA‐ARSRangeland Resources and Systems Research UnitFort CollinsColoradoUSA
| | - Anna C. Knight
- US Geological SurveySouthwest Biological Science CenterMoabUtahUSA
| | - Daniel R. Schlaepfer
- US Geological SurveySouthwest Biological Science CenterFlagstaffArizonaUSA
- Center for Adaptable Western Landscapes, Northern Arizona UniversityFlagstaffArizonaUSA
| | | |
Collapse
|
2
|
Schlaepfer DR, Chambers JC, Urza AK, Hanberry BB, Brown JL, Board DI, Campbell SB, Clause KJ, Crist MR, Bradford JB. Declining ecological resilience and invasion resistance under climate change in the sagebrush region, United States. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3065. [PMID: 39581955 DOI: 10.1002/eap.3065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/26/2024] [Indexed: 11/26/2024]
Abstract
In water-limited dryland ecosystems of the Western United States, climate change is intensifying the impacts of heat, drought, and wildfire. Disturbances often lead to increased abundance of invasive species, in part, because dryland restoration and rehabilitation are inhibited by limited moisture and infrequent plant recruitment events. Information on ecological resilience to disturbance (recovery potential) and resistance to invasive species can aid in addressing these challenges by informing long-term restoration and conservation planning. Here, we quantified the impacts of projected future climate on ecological resilience and invasion resistance (R&R) in the sagebrush region using novel algorithms based on ecologically relevant and climate-sensitive predictors of climate and ecological drought. We used a process-based ecohydrological model to project these predictor variables and resulting R&R indicators for two future climate scenarios and 20 climate models. Results suggested widespread future R&R decreases (24%-34% of the 1.16 million km2 study area) that are generally consistent among climate models. Variables related to rising temperatures were most strongly linked to decreases in R&R indicators. New continuous R&R indices quantified responses to climate change; particularly useful for areas without projected change in the R&R category but where R&R still may decrease, for example, some of the areas with a historically low R&R category. Additionally, we found that areas currently characterized as having high sagebrush ecological integrity had the largest areal percentage with expected declines in R&R in the future, suggesting continuing declines in sagebrush ecosystems. One limitation of these R&R projections was relatively novel future climatic conditions in particularly hot and dry areas that were underrepresented in the training data. Including more data from these areas in future updates could further improve the reliability of the projections. Overall, these projected future declines in R&R highlight a growing challenge for natural resource managers in the region, and the resulting spatially explicit datasets provide information that can improve long-term risk assessments, prioritizations, and climate adaptation efforts.
Collapse
Affiliation(s)
- Daniel R Schlaepfer
- U.S. Geological Survey, Southwest Biological Science Center and Northwest Climate Adaptation Science Center, Flagstaff, Arizona, USA
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jeanne C Chambers
- USDA Forest Service, Rocky Mountain Research Station, Reno, Nevada, USA
| | - Alexandra K Urza
- USDA Forest Service, Rocky Mountain Research Station, Reno, Nevada, USA
| | - Brice B Hanberry
- USDA Forest Service, Rocky Mountain Research Station, Rapid City, South Dakota, USA
| | - Jessi L Brown
- USDA Forest Service, Rocky Mountain Research Station, Reno, Nevada, USA
| | - David I Board
- USDA Forest Service, Rocky Mountain Research Station, Reno, Nevada, USA
| | - Steven B Campbell
- USDA Natural Resources Conservation Service, West National Technology Support Center, Portland, Oregon, USA
| | - Karen J Clause
- USDA Forest Service, Bridger-Teton National Forest, Pinedale, Wyoming, USA
| | - Michele R Crist
- U.S. Bureau of Land Management, National Interagency Fire Center, Boise, Idaho, USA
| | - John B Bradford
- U.S. Geological Survey, Southwest Biological Science Center and Northwest Climate Adaptation Science Center, Flagstaff, Arizona, USA
| |
Collapse
|
3
|
Finger-Higgens R, Hoover DL, Knight AC, Wilson SL, Bishop TBB, Reibold R, Reed SC, Duniway MC. Seasonal drought treatments impact plant and microbial uptake of nitrogen in a mixed shrub grassland on the Colorado Plateau. Ecology 2024; 105:e4393. [PMID: 39104160 DOI: 10.1002/ecy.4393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/24/2024] [Indexed: 08/07/2024]
Abstract
For many drylands, both long- and short-term drought conditions can accentuate landscape heterogeneity at both temporal (e.g., role of seasonal patterns) and spatial (e.g., patchy plant cover) scales. Furthermore, short-term drought conditions occurring over one season can exacerbate long-term, multidecadal droughts or aridification, by limiting soil water recharge, decreasing plant growth, and altering biogeochemical cycles. Here, we examine how experimentally altered seasonal precipitation regimes in a mixed shrub grassland on the Colorado Plateau impact soil moisture, vegetation, and carbon and nitrogen cycling. The experiment was conducted from 2015 to 2019, during a regional multidecadal drought event, and consisted of three precipitation treatments, which were implemented with removable drought shelters intercepting ~66% of incoming precipitation including: control (ambient precipitation conditions, no shelter), warm season drought (sheltered April-October), and cool season drought (sheltered November-March). To track changes in vegetation, we measured biomass of the dominant shrub, Ephedra viridis, and estimated perennial plant and ground cover in the spring and the fall. Soil moisture dynamics suggested that warm season experimental drought had longer and more consistent drought legacy effects (occurring two out of the four drought cycles) than either cool season drought or ambient conditions, even during the driest years. We also found that E. viridis biomass remained consistent across treatments, while bunchgrass cover declined by 25% by 2019 across all treatments, with the earliest declines noticeable in the warm season drought plots. Extractable dissolved inorganic nitrogen and microbial biomass nitrogen concentrations appeared sensitive to seasonal drought conditions, with dissolved inorganic nitrogen increasing and microbial biomass nitrogen decreasing with reduced soil volumetric water content. Carbon stocks were not sensitive to drought but were greater under E. viridis patches. Additionally, we found that under E. viridis, there was a negative relationship between dissolved inorganic nitrogen and microbial biomass nitrogen, suggesting that drought-induced increases in dissolved inorganic nitrogen may be due to declines in nitrogen uptake from microbes and plants alike. This work suggests that perennial grass plant-soil feedbacks are more vulnerable to both short-term (seasonal) and long-term (multiyear) drought events than shrubs, which can impact the future trajectory of dryland mixed shrub grassland ecosystems as drought frequency and intensity will likely continue to increase with ongoing climate change.
Collapse
Affiliation(s)
| | - David L Hoover
- USDA-ARS Rangeland Resource and Systems Research Unit, Crops Research Laboratory, Fort Collins, Colorado, USA
| | - Anna C Knight
- US Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | - Savannah L Wilson
- US Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | - Tara B B Bishop
- US Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
- Department of Earth Science, Utah Valley University, Orem, Utah, USA
| | - Robin Reibold
- US Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | - Sasha C Reed
- US Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | - Michael C Duniway
- US Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| |
Collapse
|
4
|
Duniway MC, Benson C, Nauman TW, Knight A, Bradford JB, Munson SM, Witwicki D, Livensperger C, Van Scoyoc M, Fisk TT, Thoma D, Miller ME. Geologic, geomorphic, and edaphic underpinnings of dryland ecosystems: Colorado Plateau landscapes in a changing world. Ecosphere 2022. [DOI: 10.1002/ecs2.4273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | | | - Travis W. Nauman
- US Geological Survey Southwest Biological Science Center Moab Utah USA
| | - Anna Knight
- US Geological Survey Southwest Biological Science Center Moab Utah USA
| | - John B. Bradford
- US Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| | - Seth M. Munson
- US Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| | - Dana Witwicki
- National Park Service Northern Colorado Plateau Network Moab Utah USA
- National Park Service Natural Resource Condition Assessment Fort Collins Colorado USA
| | - Carolyn Livensperger
- National Park Service Northern Colorado Plateau Network Moab Utah USA
- National Park Service Capitol Reef National Park Fruita Utah USA
| | | | - Terry T. Fisk
- National Park Service Southeast Utah Group Parks Moab Utah USA
- National Park Service Water Resources Division Fort Collins Colorado USA
| | - David Thoma
- National Park Service Northern Colorado Plateau Network Moab Utah USA
| | - Mark E. Miller
- National Park Service Southeast Utah Group Parks Moab Utah USA
- National Park Service Wrangell‐St. Elias National Park and Preserve Copper Center Alaska USA
| |
Collapse
|
5
|
Young SNR, Dunning LT, Liu H, Stevens CJ, Lundgren MR. C4 trees have a broader niche than their close C3 relatives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3189-3204. [PMID: 35293994 PMCID: PMC9126736 DOI: 10.1093/jxb/erac113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Previous studies have demonstrated the ecological sorting of herbaceous C3 and C4 species along gradients of precipitation and temperature: C4 herbaceous species typically occupy drier and warmer environments than their C3 relatives. However, it is unclear if this pattern holds true for C4 tree species, which are unique to Euphorbiaceae and found only on the Hawaiian Islands. Here, we combine occurrence data with local environmental and soil datasets to, for the first time, distinguish the ecological factors associated with photosynthetic diversification in the tree life form. These data are presented within a phylogenetic framework. We show that C3 and C4 trees inhabit similar environments, but that C4 photosynthesis expands the ecological niche in trees relative to that of C3 tree species. In particular, when compared with C3 trees, C4 trees moved into higher elevation habitats with characteristically sparse vegetation (and thus greater sunlight) and cooler temperatures, a pattern which contrasts with that of herbaceous species. Understanding the relationship between C4 photosynthesis and ecological niche in tree species has implications for establishing how C4 photosynthesis has, in this rare instance, evolved in trees, and whether this unique combination of traits could be exploited from an engineering perspective.
Collapse
Affiliation(s)
- Sophie N R Young
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Carly J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | |
Collapse
|
6
|
Mahood AL, Jones RO, Board DI, Balch JK, Chambers JC. Interannual climate variability mediates changes in carbon and nitrogen pools caused by annual grass invasion in a semiarid shrubland. GLOBAL CHANGE BIOLOGY 2022; 28:267-284. [PMID: 34614268 PMCID: PMC9291498 DOI: 10.1111/gcb.15921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/26/2021] [Indexed: 05/13/2023]
Abstract
Exotic plant invasions alter ecosystem properties and threaten ecosystem functions globally. Interannual climate variability (ICV) influences both plant community composition (PCC) and soil properties, and interactions between ICV and PCC may influence nitrogen (N) and carbon (C) pools. We asked how ICV and non-native annual grass invasion covary to influence soil and plant N and C in a semiarid shrubland undergoing widespread ecosystem transformation due to invasions and altered fire regimes. We sampled four progressive stages of annual grass invasion at 20 sites across a large (25,000 km2 ) landscape for plant community composition, plant tissue N and C, and soil total N and C in 2013 and 2016, which followed 2 years of dry and wet conditions, respectively. Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure-shrubs, grasses, and forbs-will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.
Collapse
Affiliation(s)
- Adam L. Mahood
- Department of GeographyUniversity of Colorado BoulderBoulderColoradoUSA
- Earth LabUniversity of ColoradoBoulderColoradoUSA
| | - Rachel O. Jones
- Department of Biological & Ecological EngineeringOregon State UniversityCorvallisOregonUSA
| | - David I. Board
- US Forest ServiceRocky Mountain Research StationRenoNevadaUSA
| | - Jennifer K. Balch
- Department of GeographyUniversity of Colorado BoulderBoulderColoradoUSA
- Earth LabUniversity of ColoradoBoulderColoradoUSA
| | | |
Collapse
|
7
|
Gray JE, Komatsu KJ, Smith MD. Defining codominance in plant communities. THE NEW PHYTOLOGIST 2021; 230:1716-1730. [PMID: 33539550 DOI: 10.1111/nph.17253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Species dominance and biodiversity in plant communities have received considerable attention and characterisation. However, species codominance, while often alleged, is seldom defined or quantified. Codominance is a common phenomenon and is likely to be an important driver of community structure, ecosystem function and the stability of both. Here we review the use of the term 'codominance' and find inconsistencies in its use, suggesting that the scientific community currently lacks a universal understanding of codominance. We address this issue by: (1) qualitatively defining codominance as mostly shared abundance that is distinctively isolated within a subset of a community, and (2) presenting a novel metric for quantifying the degree to which relative abundances are shared among a codominant subset of plant species, while also accounting for the remaining species within a plant community. Using both simulated and real-world data, we then demonstrate the process of applying the codominance metric to compare communities and to generate a quantitatively defensible subset of species to consider codominant within a community. We show that our metric effectively distinguishes the degree of codominance between four types of grassland ecosystems as well as simulated ecosystems with varying degrees of abundance sharing among community members. Overall, we make the case that increased research focusses on the conditions under which codominance occurs and the consequences for species coexistence, community structure and ecosystem function that would considerably advance the fields of community and ecosystem ecology.
Collapse
Affiliation(s)
- Jesse E Gray
- Department of Biology, Colorado State University, Fort Collins, CO, 80521, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80521, USA
| | | | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, CO, 80521, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80521, USA
| |
Collapse
|
8
|
Estimating Ecological Responses to Climatic Variability on Reclaimed and Unmined Lands Using Enhanced Vegetation Index. REMOTE SENSING 2021. [DOI: 10.3390/rs13061100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Climatic impact on re-established ecosystems at reclaimed mined lands may have changed. However, little knowledge is available about the difference in vegetation–climate relationships between reclaimed and unmined lands. In this study, ecological responses to climatic variability on reclaimed and neighbouring unmined lands were estimated using remote-sensing data at the Pingshuo Mega coal mine, one of the largest coal mines with long-term reclamation history in China. Time-series MODIS enhanced vegetation index (EVI) data and meteorological data from 1997 to 2017 were collected. Results show significantly different vegetation–climate relationships between reclaimed and unmined lands. First, the accumulation periods of all climatic variables were much longer on reclaimed mining lands. Second, vegetation on reclaimed lands responded to variabilities in temperature, rainfall, air humidity, and wind speed, while undisturbed vegetation only responded to variabilities of temperature and air humidity. Third, climatic variability made a much higher contribution to EVI variation on reclaimed land (20.0–46.5%) than on unmined land (0.7–1.7%). These differences were primarily caused by limited ecosystem resilience, and changed site hydrology and microclimate on reclaimed land. Thus, this study demonstrates that the legacy effects of surface mining can critically change on-site vegetation–climate relationships, which impacts the structure, functions, and stability of reclaimed ecosystems. Vegetation–climate relationships of reclaimed ecosystems deserve further research, and remote-sensing vegetation data are an effective source for relevant studies.
Collapse
|
9
|
Thoma DP, Tercek MT, Schweiger EW, Munson SM, Gross JE, Olliff ST. Water balance as an indicator of natural resource condition: Case studies from Great Sand Dunes National Park and Preserve. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
10
|
Bradford JB, Schlaepfer DR, Lauenroth WK, Palmquist KA. Robust ecological drought projections for drylands in the 21st century. GLOBAL CHANGE BIOLOGY 2020; 26:3906-3919. [PMID: 32342577 DOI: 10.1111/gcb.15075] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 05/26/2023]
Abstract
Dryland ecosystems may be especially vulnerable to expected 21st century increases in temperature and aridity because they are tightly controlled by moisture availability. However, climate impact assessments in drylands are difficult because ecological dynamics are dictated by drought conditions that are difficult to define and complex to estimate from climate conditions alone. In addition, precipitation projections vary substantially among climate models, enhancing variation in overall trajectories for aridity. Here, we constrain this uncertainty by utilizing an ecosystem water balance model to quantify drought conditions with recognized ecological importance, and by identifying changes in ecological drought conditions that are robust among climate models, defined here as when >90% of models agree in the direction of change. Despite limited evidence for robust changes in precipitation, changes in ecological drought are robust over large portions of drylands in the United States and Canada. Our results suggest strong regional differences in long-term drought trajectories, epitomized by chronic drought increases in southern areas, notably the Upper Gila Mountains and South-Central Semi-arid Prairies, and decreases in the north, particularly portions of the Temperate and West-Central Semi-arid Prairies. However, we also found that exposure to hot-dry stress is increasing faster than mean annual temperature over most of these drylands, and those increases are greatest in northern areas. Robust shifts in seasonal drought are most apparent during the cool season; when soil water availability is projected to increase in northern regions and decrease in southern regions. The implications of these robust drought trajectories for ecosystems will vary geographically, and these results provide useful insights about the impact of climate change on these dryland ecosystems. More broadly, this approach of identifying robust changes in ecological drought may be useful for other assessments of climate impacts in drylands and provide a more rigorous foundation for making long-term strategic resource management decisions.
Collapse
Affiliation(s)
- John B Bradford
- Southwest Biological Science Center, U.S. Geological Survey, Flagstaff, AZ, USA
| | - Daniel R Schlaepfer
- Southwest Biological Science Center, U.S. Geological Survey, Flagstaff, AZ, USA
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - William K Lauenroth
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Kyle A Palmquist
- Department of Biological Sciences, Marshall University, Huntington, WV, USA
| |
Collapse
|
11
|
Spatio-Temporal Response of Vegetation Indices to Rainfall and Temperature in A Semiarid Region. SUSTAINABILITY 2020. [DOI: 10.3390/su12051939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this research, vegetation indices (VIs) were analyzed as indicators of the spatio-temporal variation of vegetation in a semi-arid region. For a better understanding of this dynamic, interactions between vegetation and climate should be studied more widely. To this end, the following methodology was proposed: (1) acquire the NDVI, EVI, SAVI, MSAVI, and NDMI by classification of vegetation and land cover categories in a monthly period from 2014 to 2018; (2) perform a geostatistical analysis of rainfall and temperature; and (3) assess the application of ordinary and uncertainty least squares linear regression models to experimental data from the response of vegetation indices to climatic variables through the BiDASys (bivariate data analysis system) program. The proposed methodology was tested in a semi-arid region of Zacatecas, Mexico. It was found that besides the high values in the indices that indicate good health, the climatic variables that have an impact on the study area should be considered given the close relationship with the vegetation. A better correlation of the NDMI and EVI with rainfall and temperature was found, and similarly, the relationship between VIs and climatic factors showed a general time lag effect. This methodology can be considered in management and conservation plans of natural ecosystems, in the context of climate change and sustainable development policies.
Collapse
|
12
|
Thoma DP, Munson SM, Witwicki DL. Landscape pivot points and responses to water balance in national parks of the southwest US. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David P. Thoma
- National Park Service Inventory and Monitoring Program Bozeman Montana
- National Park Service Inventory and Monitoring Program Moab Utah
| | - Seth M. Munson
- U.S. Geological SurveySouthwest Biological Science Center Flagstaff Arizona
| | - Dana L. Witwicki
- National Park Service Inventory and Monitoring Program Moab Utah
| |
Collapse
|
13
|
Nauman TW, Duniway MC, Villarreal ML, Poitras TB. Disturbance automated reference toolset (DART): Assessing patterns in ecological recovery from energy development on the Colorado Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:476-488. [PMID: 28179075 DOI: 10.1016/j.scitotenv.2017.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
A new disturbance automated reference toolset (DART) was developed to monitor human land surface impacts using soil-type and ecological context. DART identifies reference areas with similar soils, topography, and geology; and compares the disturbance condition to the reference area condition using a quantile-based approach based on a satellite vegetation index. DART was able to represent 26-55% of variation of relative differences in bare ground and 26-41% of variation in total foliar cover when comparing sites with nearby ecological reference areas using the Soil Adjusted Total Vegetation Index (SATVI). Assessment of ecological recovery at oil and gas pads on the Colorado Plateau with DART revealed that more than half of well-pads were below the 25th percentile of reference areas. Machine learning trend analysis of poorly recovering well-pads (quantile<0.23) had out-of-bag error rates between 37 and 40% indicating moderate association with environmental and management variables hypothesized to influence recovery. Well-pads in grasslands (median quantile [MQ]=13%), blackbrush (Coleogyne ramosissima) shrublands (MQ=18%), arid canyon complexes (MQ=18%), warmer areas with more summer-dominated precipitation, and state administered areas (MQ=12%) had low recovery rates. Results showcase the usefulness of DART for assessing discrete surface land disturbances, and highlight the need for more targeted rehabilitation efforts at oil and gas well-pads in the arid southwest US.
Collapse
Affiliation(s)
- Travis W Nauman
- U.S. Geological Survey, Southwest Biological Science Center, 2290 SW Resource Blvd, Moab, UT 84532, United States.
| | - Michael C Duniway
- U.S. Geological Survey, Southwest Biological Science Center, 2290 SW Resource Blvd, Moab, UT 84532, United States
| | - Miguel L Villarreal
- U.S. Geological Survey, Western Geographic Science Center, 345 Middlefield Rd MS #531, Menlo Park, CA 94025, United States
| | - Travis B Poitras
- U.S. Geological Survey, Western Geographic Science Center, 345 Middlefield Rd MS #531, Menlo Park, CA 94025, United States
| |
Collapse
|
14
|
Rodhouse TJ, Sergeant CJ, Schweiger EW. Ecological monitoring and evidence‐based decision‐making in America's National Parks: highlights of the Special Feature. Ecosphere 2016. [DOI: 10.1002/ecs2.1608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Thomas J. Rodhouse
- National Park Service Upper Columbia Basin Network 650 SW Columbia Street, Suite 7250 Bend Oregon 97702 USA
| | - Christopher J. Sergeant
- National Park Service Southeast Alaska Network 3100 National Park Road Juneau Alaska 99801 USA
| | | |
Collapse
|