1
|
Gaytán Á, van Dijk LJA, Faticov M, Barr AE, Tack AJM. The effect of local habitat and spatial connectivity on urban seed predation. AMERICAN JOURNAL OF BOTANY 2024; 111:e16333. [PMID: 38757608 DOI: 10.1002/ajb2.16333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
PREMISE During the last centuries, the area covered by urban landscapes is increasing all over the world. Urbanization can change local habitats and decrease connectivity among these habitats, with important consequences for species interactions. While several studies have found a major imprint of urbanization on plant-insect interactions, the effects of urbanization on seed predation remain largely unexplored. METHODS We investigated the relative impact of sunlight exposure, leaf litter, and spatial connectivity on predation by moth and weevil larvae on acorns of the pedunculate oak across an urban landscape during 2018 and 2020. We also examined whether infestations by moths and weevils were independent of each other. RESULTS While seed predation varied strongly among trees, seed predation was not related to differences in sunlight exposure, leaf litter, or spatial connectivity. Seed predation by moths and weevils was negatively correlated at the level of individual acorns in 2018, but positively correlated at the acorn and the tree level in 2020. CONCLUSIONS Our study sets the baseline expectation that urban seed predators are unaffected by differences in sunlight exposure, leaf litter, and spatial connectivity. Overall, our findings suggest that the impact of local and spatial factors on insects within an urban context may depend on the species guild. Understanding the impact of local and spatial factors on biodiversity, food web structure, and ecosystem functioning can provide valuable insights for urban planning and management strategies aimed at promoting urban insect diversity.
Collapse
Affiliation(s)
- Álvaro Gaytán
- Institute of Natural Resources and Agrobiology of Seville (IRNAS-CSIC), Reina Mercedes Ave, 10. 41012, Seville, Spain
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, SE-114 18, Stockholm, Sweden
- Bolin Center for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Laura J A van Dijk
- Swedish Museum of Natural History, Department of Bioinformatics and Genetics, Frescativägen 60, SE-114 18, Stockholm, Sweden
| | - Maria Faticov
- Département de biologie, Université de Sherbrooke, Sherbrooke (J1K 2R1), Québec, Canada
| | - Anna E Barr
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, SE-114 18, Stockholm, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, SE-114 18, Stockholm, Sweden
| |
Collapse
|
2
|
Acorn Crop, Seed Size and Chemical Defenses Determine the Performance of Specialized Insect Predators and Reproductive Output in a Mediterranean Oak. INSECTS 2021; 12:insects12080721. [PMID: 34442287 PMCID: PMC8396859 DOI: 10.3390/insects12080721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Seed predation is an antagonistic interaction that can limit plant population dynamics. We investigated the interaction between Quercus faginea and two specialized pre-dispersal insect seed predators (weevils and moths) during two years of contrasting crop size to determine the consequences of oak reproductive investment on seed production and insect performance. Crop and acorn size were lower during the second year, although seed predation rates by insects were similar during both crop years. Oaks producing more acorns reduced seed predation by insects during the large crop year and thus improved their reproductive success, and those producing bigger acorns experienced higher levels of seed predation, and more insect larvae developed inside the available acorns during the low crop year. Inter- and intra-specific insect competition increased during the low crop year and were affected by tannin content in acorns. Despite substantial between-year variations in crop and acorn size, insect performance was similar due to larvae being able to finish their development by depleting acorn reserves when resources were low. Crop size, acorn size and chemical composition seem important traits for reducing seed predation by specialized insects and improve reproductive success in this Mediterranean oak species. Abstract Seed predation is an antagonistic interaction that negatively affects the performance of individual plants and can limit plant population dynamics. In animal-dispersed plants, crop size is an important determinant of plant reproductive success through its effect on seed dispersers and predators. Seed traits, such as size or chemical composition, can also increase the tolerance to seed predators or reduce their performance. We investigated the interaction between Quercus faginea and two specialized pre-dispersal insect seed predators (weevils and moths) during two years of contrasting crop size to determine the consequences of oak reproductive investment on seed production and insect performance. Crop size was 44% lower and acorns were 32% smaller in the second year, although acorn predation by insects was proportionally similar between both years at the population level. Individual trees producing larger crops showed a lower incidence of insect predators during the year of abundant acorn production, whereas trees producing bigger acorns experienced higher seed predation rates by insects, and acorns held more insect larvae in the low crop year. Competition between insects increased when acorn production was low, and higher tannin content in acorns further constrained the number of weevil larvae developing together in the same acorn. However, the abundance and size of insect larvae produced per tree were similar between the two crop years, and this was due to larvae often depleting acorn reserves when resources were low. Oak reproductive output increased nearly two-fold during the large crop year. Crop size variation, acorn production in a given year and acorn size and chemical composition seem to be important traits for reducing damage by insect predators in Quercus faginea and improve oak reproductive success.
Collapse
|
3
|
Decline and recovery in cell population densities of Heterosigma akashiwo (Raphidophyceae) as a novel bloom driver for the species. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467421000171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe frequency and intensity of harmful algal bloom (HAB) events have been increasing in many places around the world. Heterosigma akashiwo is a marine raphidophyte species known to cause HABs in many places across tropical and temperate climates. Studies of temperate strains have identified that H. akashiwo blooms are driven by mass activation of cysts which, for this species, can only form at <15°C temperatures. Although these temperatures do not occur in the tropics, there have been no comparative studies for tropical H. akashiwo. This study aimed to investigate whether tropical H. akashiwo can form cysts under warm temperatures, therefore having different responses from temperate strains. Results showed that tropical H. akashiwo were similar with temperate strains and could only form round cyst-like structures at 5°C but not 25°C. We also observed novel response of a decline and recovery in cell densities at 25°C. The decline was interrupted when the cultures were diluted, implying a tendency for H. akashiwo to rapidly spread and accumulate within surrounding waters, thereby facilitating blooms. This behaviour presents unique bloom concerns. Close monitoring of H. akashiwo distribution patterns is needed for better assessment of the bloom threat posed within tropical waters.
Collapse
|
4
|
Fernández‐Martínez M, Peñuelas J. Measuring temporal patterns in ecology: The case of mast seeding. Ecol Evol 2021; 11:2990-2996. [PMID: 33841760 PMCID: PMC8019024 DOI: 10.1002/ece3.7291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Properly assessing temporal patterns is a central issue in ecology in order to understand ecosystem processes and their mechanisms. Mast seeding has traditionally been described as a reproductive behavior consisting of highly variable and synchronized reproductive events. The most common metric used to measure temporal variability and thus infer masting behavior, the coefficient of variation (CV), however, has been repeatedly suggested to improperly estimate temporal variability. Biases of CV estimates are especially problematic for non-normally distributed data and/or data sets with a high number of zeros.Some recent studies have already adopted new metrics to measure temporal variability, but most continue to use CV. This controversy has started a strong debate about what metrics to use.We here summarize the problems of CV when assessing temporal variability, particularly across data sets containing a large number of zeros, and highlight the benefits of using other metrics of temporal variability, such as proportional variability (PV) and consecutive disparity (D). We also suggest a new way to look at reproductive behavior, by separating temporal variability from frequency of reproduction, to allow better comparison of data sets with different characteristics.We suggest future studies to properly describe the temporal patterns in fully scientific and measurable terms that do not lead to confusion, such as variability and frequency of reproduction, using robust and fully comparable metrics.
Collapse
Affiliation(s)
| | - Josep Peñuelas
- CSICGlobal Ecology UnitCREAF‐CSIC‐UABBellaterraBarcelonaSpain
- CREAFBellaterraBarcelonaSpain
| |
Collapse
|
5
|
Fernández-Martínez M, Pearse I, Sardans J, Sayol F, Koenig WD, LaMontagne JM, Bogdziewicz M, Collalti A, Hacket-Pain A, Vacchiano G, Espelta JM, Peñuelas J, Janssens IA. Nutrient scarcity as a selective pressure for mast seeding. NATURE PLANTS 2019; 5:1222-1228. [PMID: 31792395 DOI: 10.1038/s41477-019-0549-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Mast seeding is one of the most intriguing reproductive traits in nature. Despite its potential drawbacks in terms of fitness, the widespread existence of this phenomenon suggests that it should have evolutionary advantages under certain circumstances. Using a global dataset of seed production time series for 219 plant species from all of the continents, we tested whether masting behaviour appears predominantly in species with low foliar nitrogen and phosphorus concentrations when controlling for local climate and productivity. Here, we show that masting intensity is higher in species with low foliar N and P concentrations, and especially in those with imbalanced N/P ratios, and that the evolutionary history of masting behaviour has been linked to that of nutrient economy. Our results support the hypothesis that masting is stronger in species growing under limiting conditions and suggest that this reproductive behaviour might have evolved as an adaptation to nutrient limitations and imbalances.
Collapse
Affiliation(s)
- M Fernández-Martínez
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Antwerp, Belgium.
- Global Ecology Unit, CREAF-CSIC-UAB, Barcelona, Spain.
| | - I Pearse
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | - J Sardans
- Global Ecology Unit, CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - F Sayol
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - W D Koenig
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - J M LaMontagne
- Department of Biological Sciences, DePaul University, Chicago, IL, USA
| | - M Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - A Collalti
- Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Rende, Italy
- Department of Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - A Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | | | | | - J Peñuelas
- Global Ecology Unit, CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - I A Janssens
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Bogdziewicz M, Żywiec M, Espelta JM, Fernández-Martinez M, Calama R, Ledwoń M, McIntire E, Crone EE. Environmental Veto Synchronizes Mast Seeding in Four Contrasting Tree Species. Am Nat 2019; 194:246-259. [PMID: 31318289 DOI: 10.1086/704111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Synchronized and variable reproduction by perennial plants, called mast seeding, is a major reproductive strategy of trees. The need to accumulate sufficient resources after depletion following fruiting (resource budget), the efficiency of mass flowering for outcross pollination (pollen coupling), or the external factors preventing reproduction (environmental veto) could all synchronize masting. We used seed production data for four species (Quercus ilex, Quercus humilis, Sorbus aucuparia, and Pinus albicaulis) to parametrize resource budget models of masting. Based on species life-history characteristics, we hypothesized that pollen coupling should synchronize reproduction in S. aucuparia and P. albicaulis, while in Q. ilex and Q. humilis, environmental veto should be a major factor. Pollen coupling was stronger in S. aucuparia and P. albicaulis than in oaks, while veto was more frequent in the latter. Yet in all species, costs of reproduction were too small to impose a replenishment period. A synchronous environmental veto, in the presence of environmental stochasticity, was sufficient to produce observed variability and synchrony in reproduction. In the past, vetoes like frost events that prevent reproduction have been perceived as negative for plants. In fact, they could be selectively favored as a way to create mast seeding.
Collapse
|
7
|
Bogdziewicz M, Espelta JM, Bonal R. Tolerance to seed predation mediated by seed size increases at lower latitudes in a Mediterranean oak. ANNALS OF BOTANY 2019; 123:707-714. [PMID: 30452531 PMCID: PMC6417470 DOI: 10.1093/aob/mcy203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/15/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS The ability of plants to allocate energy to resistance against herbivores changes with abiotic conditions and thus may vary along geographical clines, with important consequences for plant communities. Seed size is a plant trait potentially influencing plant tolerance to endoparasites, and seed size often varies across latitude. Consequently, plant tolerance to endoparasites may change across geographical clines. METHODS The interaction between Quercus ilex (holm oak) and seed-predating Curculio spp. (weevils) was explored along most of the latitudinal range of Q. ilex. This included quantification of variation in seed size, survival likelihood of infested seeds, multi-infestation of acorns and community composition of Curculio weevils in acorns. KEY RESULTS Larger seeds had a higher probability of surviving weevil attack (i.e. embryo not predated). Southern populations of oak produced on average four times larger seeds than those of northern populations. Consequently, the probability of survival of infested acorns decreased with latitude. The community composition of Curculio varied, with large weevils (C. elephas) dominating in southern populations and small weevils (C. glandium) dominating in northern populations. However, damage tolerance was robust against this turnover in predator functional traits. Furthermore, we did not detect any change in multi-infestation of acorns along the geographical gradient. CONCLUSIONS Quercus ilex tolerance to seed predation by Curculio weevils increases toward the southern end of its distribution. Generally, studies on geographical variation in plant defence against enemies largely ignore seed attributes or they focus on seed physical barriers. Thus, this research suggests another dimension in which geographical trends in plant defences should be considered, i.e. geographical variation in tolerance to seed predators mediated by seed size.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- For correspondence. E-mail
| | | | - Raul Bonal
- Forest Research Group, INDEHESA, University of Extremadura, Plasencia, Spain
- DITEG Research Group, University of Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
8
|
Bogdziewicz M, Marino S, Bonal R, Zwolak R, Steele MA. Rapid aggregative and reproductive responses of weevils to masting of North American oaks counteract predator satiation. Ecology 2018; 99:2575-2582. [PMID: 30182480 DOI: 10.1002/ecy.2510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/07/2018] [Accepted: 08/20/2018] [Indexed: 11/09/2022]
Abstract
The predator satiation hypothesis posits that masting helps plants escape seed predation through starvation of predators in lean years, followed by satiation of predators in mast years. Importantly, successful satiation requires sufficiently delayed bottom-up effects of seed availability on seed consumers. However, some seed consumers may be capable of quick aggregative and reproductive responses to masting, which may jeopardize positive density dependence of seed survival. We used a 17-yr data set on seed production and insect (Curculio weevils) infestation of three North American oaks species (northern red Quercus rubra, white Q. alba, and chestnut oak Q. montana) to test predictions of the predation satiation hypothesis. Furthermore, we tested for the unlagged numerical response of Curculio to acorn production. We found that masting results in a bottom-up effect on the insect population; both through increased reproductive output and aggregation at seed-rich trees. Consequently, mast seeding in two out of three studied oaks (white and chestnut oak) did not help to escape insect seed predation, whereas, in the red oak, the escape depended on the synchronization of mast crops within the population. Bottom-up effects of masting on seed consumer populations are assumed to be delayed, and therefore to have negligible effects on seed survival in mast years. Our research suggests that insect populations may be able to mount rapid reproductive and aggregative responses when seed availability increases, possibly hindering satiation effects of masting. Many insect species are able to quickly benefit from pulsed resources, making mechanisms described here potentially relevant in many other systems.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Shealyn Marino
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, 18766, USA
| | - Raul Bonal
- Forest Research Group, INDEHESA, University of Extremadura, Calle Virgen Puerto, 2, 10600, Plasencia, Spain.,DITEG Research Group, University of Castilla-La Mancha, Calle Altagracia, 50, 13003 Ciudad Real, Toledo, Spain
| | - Rafał Zwolak
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Michael A Steele
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, 18766, USA
| |
Collapse
|
9
|
Bogdziewicz M, Fernández-Martínez M, Bonal R, Belmonte J, Espelta JM. The Moran effect and environmental vetoes: phenological synchrony and drought drive seed production in a Mediterranean oak. Proc Biol Sci 2018; 284:rspb.2017.1784. [PMID: 29093224 DOI: 10.1098/rspb.2017.1784] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/02/2017] [Indexed: 11/12/2022] Open
Abstract
Masting is the highly variable production of synchronized seed crops, and is a common reproductive strategy in plants. Weather has long been recognized as centrally involved in driving seed production in masting plants. However, the theory behind mechanisms connecting weather and seeding variation has only recently been developed, and still lacks empirical evaluation. We used 12-year long seed production data for 255 holm oaks (Quercus ilex), as well as airborne pollen and meteorological data, and tested whether masting is driven by environmental constraints: phenological synchrony and associated pollination efficiency, and drought-related acorn abscission. We found that warm springs resulted in short pollen seasons, and length of the pollen seasons was negatively related to acorn production, supporting the phenological synchrony hypothesis. Furthermore, the relationship between phenological synchrony and acorn production was modulated by spring drought, and effects of environmental vetoes on seed production were dependent on last year's environmental constraint, implying passive resource storage. Both vetoes affected among-tree synchrony in seed production. Finally, precipitation preceding acorn maturation was positively related to seed production, mitigating apparent resource depletion following high crop production in the previous year. These results provide new insights into mechanisms beyond widely reported weather and seed production correlations.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland .,CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| | - Marcos Fernández-Martínez
- CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain.,CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Raul Bonal
- Forest Research Group, INDEHESA, University of Extremadura, Plasencia, Spain.,DITEG Research Group, University of Castilla-La Mancha, Toledo, Spain
| | - Jordina Belmonte
- ICTA-UAB, Departament de biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain.,Unitat de Botànica, Departament de biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | | |
Collapse
|
10
|
Bogdziewicz M, Espelta JM, Muñoz A, Aparicio JM, Bonal R. Effectiveness of predator satiation in masting oaks is negatively affected by conspecific density. Oecologia 2018; 186:983-993. [PMID: 29383506 PMCID: PMC5859101 DOI: 10.1007/s00442-018-4069-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 11/22/2022]
Abstract
Variation in seed availability shapes plant communities, and is strongly affected by seed predation. In some plant species, temporal variation in seed production is especially high and synchronized over large areas, which is called ‘mast seeding’. One selective advantage of this phenomenon is predator satiation which posits that masting helps plants escape seed predation through starvation of predators in lean years, and satiation in mast years. However, even though seed predation can be predicted to have a strong spatial component and depend on plant densities, whether the effectiveness of predator satiation in masting plants changes according to the Janzen-Connell effect has been barely investigated. We studied, over an 8-year period, the seed production, the spatiotemporal patters of weevil seed predation, and the abundance of adult weevils in a holm oak (Quercus ilex) population that consists of trees interspersed at patches covering a continuum of conspecific density. Isolated oaks effectively satiate predators, but this is trumped by increasing conspecific plant density. Lack of predator satiation in trees growing in dense patches was caused by re-distribution of insects among plants that likely attenuated them against food shortage in lean years, and changed the type of weevil functional response from type II in isolated trees to type III in trees growing in dense patches. This study provides the first empirical evaluation of the notion that masting and predator satiation should be more important in populations that start to dominate their communities, and is consistent with the observation that masting is less frequent and less intense in diverse forests.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland. .,CREAF, Cerdanyola del Valles, 08193, Catalonia, Spain.
| | | | - Alberto Muñoz
- Departamento de Didáctica de la Ciencias Experimentales, Facultad de Educación, Universidad Complutense de Madrid, Madrid, Spain
| | - Jose M Aparicio
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Raul Bonal
- Forest Research Group, INDEHESA, University of Extremadura, Plasencia, Spain.,DITEG Research Group, University of Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
11
|
Arias-Leclaire H, Bonal R, García-López D, Espelta JM. Role of seed size, phenology, oogenesis and host distribution in the specificity and genetic structure of seed weevils (Curculio spp.) in mixed forests. Integr Zool 2017; 13:267-279. [PMID: 29168606 PMCID: PMC6221125 DOI: 10.1111/1749-4877.12293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synchrony between seed growth and oogenesis is suggested to largely shape trophic breadth of seed‐feeding insects and ultimately to contribute to their co‐existence by means of resource partitioning or in the time when infestation occurs. Here we investigated: (i) the role of seed phenology and sexual maturation of females in the host specificity of seed‐feeding weevils (Curculio spp.) predating in hazel and oak mixed forests; and (ii) the consequences that trophic breadth and host distribution have in the genetic structure of the weevil populations. DNA analyses were used to establish unequivocally host specificity and to determine the population genetic structure. We identified 4 species with different specificity, namely Curculio nucum females matured earlier and infested a unique host (hazelnuts, Corylus avellana) while 3 species (Curculio venosus, Curculio glandium and Curculio elephas) predated upon the acorns of the 2 oaks (Quercus ilex and Quercus pubescens). The high specificity of C. nucum coupled with a more discontinuous distribution of hazel trees resulted in a significant genetic structure among sites. In addition, the presence of an excess of local rare haplotypes indicated that C. nucum populations went through genetic expansion after recent bottlenecks. Conversely, these effects were not observed in the more generalist Curculio glandium predating upon oaks. Ultimately, co‐existence of weevil species in this multi‐host‐parasite system is influenced by both resource and time partitioning. To what extent the restriction in gene flow among C. nucum populations may have negative consequences for their persistence in a time of increasing disturbances (e.g. drought in Mediterranean areas) deserves further research.
Collapse
Affiliation(s)
- Harold Arias-Leclaire
- CREAF, Centre for Ecological Research and Forestry Applications, Cerdanyola del Vallès, 08193, Spain.,Exact and Natural Sciences School, State Distance University of Costa Rica, UNED, Mercedes de Montes de Oca, San José, Costa Rica
| | - Raúl Bonal
- Forest Research Group, INDEHESA, University of Extremadura, Plasencia, Spain.,DITEG Research Group, University of Castilla-La Mancha, Toledo, Spain
| | - Daniel García-López
- Zoology Department, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Josep Maria Espelta
- CREAF, Centre for Ecological Research and Forestry Applications, Cerdanyola del Vallès, 08193, Spain
| |
Collapse
|
12
|
Fernández-Martínez M, Bogdziewicz M, Espelta JM, Peñuelas J. Nature beyond Linearity: Meteorological Variability and Jensen's Inequality Can Explain Mast Seeding Behavior. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|