1
|
Arellano AA, Young EB, Coon KL. An inquiline mosquito modulates microbial diversity and function in an aquatic microecosystem. Mol Ecol 2024; 33:e17314. [PMID: 38441172 PMCID: PMC10989397 DOI: 10.1111/mec.17314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/03/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Understanding microbial roles in ecosystem function requires integrating microscopic processes into food webs. The carnivorous pitcher plant, Sarracenia purpurea, offers a tractable study system where diverse food webs of macroinvertebrates and microbes facilitate digestion of captured insect prey, releasing nutrients supporting the food web and host plant. However, how interactions between these macroinvertebrate and microbial communities contribute to ecosystem functions remains unclear. We examined the role of the pitcher plant mosquito, Wyeomyia smithii, in top-down control of the composition and function of pitcher plant microbial communities. Mosquito larval abundance was enriched or depleted across a natural population of S. purpurea pitchers over a 74-day field experiment. Bacterial community composition and microbial community function were characterized by 16S rRNA amplicon sequencing and profiling of carbon substrate use, bulk metabolic rate, hydrolytic enzyme activity, and macronutrient pools. Bacterial communities changed from pitcher opening to maturation, but larvae exerted minor effects on high-level taxonomic composition. Higher larval abundance was associated with lower diversity communities with distinct functions and elevated nitrogen availability. Treatment-independent clustering also supported roles for larvae in curating pitcher microbial communities through shifts in community diversity and function. These results demonstrate top-down control of microbial functions in an aquatic microecosystem.
Collapse
Affiliation(s)
- Aldo A. Arellano
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | - Erica B. Young
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI USA
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI USA
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
2
|
Regulation by the Pitcher Plant Sarracenia purpurea of the Structure of its Inquiline Food Web. AMERICAN MIDLAND NATURALIST 2021. [DOI: 10.1674/0003-0031-186.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Northrop AC, Avalone V, Ellison AM, Ballif BA, Gotelli NJ. Clockwise and counterclockwise hysteresis characterize state changes in the same aquatic ecosystem. Ecol Lett 2020; 24:94-101. [PMID: 33079483 DOI: 10.1111/ele.13625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 11/26/2022]
Abstract
Incremental increases in a driver variable, such as nutrients or detritus, can trigger abrupt shifts in aquatic ecosystems that may exhibit hysteretic dynamics and a slow return to the initial state. A model system for understanding these dynamics is the microbial assemblage that inhabits the cup-shaped leaves of the pitcher plant Sarracenia purpurea. With enrichment of organic matter, this system flips within three days from an oxygen-rich state to an oxygen-poor state. In a replicated greenhouse experiment, we enriched pitcher-plant leaves at different rates with bovine serum albumin (BSA), a molecular substitute for detritus. Changes in dissolved oxygen (DO) and undigested BSA concentration were monitored during enrichment and recovery phases. With increasing enrichment rates, the dynamics ranged from clockwise hysteresis (low), to environmental tracking (medium), to novel counter-clockwise hysteresis (high). These experiments demonstrate that detrital enrichment rate can modulate a diversity of hysteretic responses within a single aquatic ecosystem, and suggest different management strategies may be needed to mitigate the effects of high vs. low rates of detrital enrichment.
Collapse
Affiliation(s)
| | - Vanessa Avalone
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
4
|
Guirro M, Herrero P, Costa A, Gual-Grau A, Ceretó-Massagué A, Hernández A, Torrell H, Arola L, Canela N. Comparison of metaproteomics workflows for deciphering the functions of gut microbiota in an animal model of obesity. J Proteomics 2019; 209:103489. [PMID: 31445216 DOI: 10.1016/j.jprot.2019.103489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Metaproteomics has emerged as a new, revolutionary approach to study gut microbiota functionality, but the lack of consistent studies in this field due to the great complexity of samples has prompted to search new strategies to achieve better metaproteome characterization. Some steps in sample preparation and data analysis procedures are critical for obtaining accurate results, therefore protein extraction buffers, digestion procedures and fractionation steps were tested here. Initially, two lysis buffers were used to improve protein extraction, two common digestion protocols were compared, and fractionation processes were employed at both the peptide and protein levels. The combination of these procedures resulted in five different methodologies; SDS buffer, in-gel digestion and fractionation at the peptide level provided the best results. Finally, the metaproteomics workflow was tested in a real case study with obese rats, in which a metagenomics study was previously performed. Important differences in protein levels were observed between groups that were potentially related to the taxonomical family, indicating that functional processes are modulated by the microbiota. Therefore, in addition to the necessity of combining different metaomics approaches, an optimized metaproteomics workflow such as the presented in this study is required to obtain a better understanding of the microbiota function. SIGNIFICANCE: Gut microbiota has emerged as an important factor with affects the health balance in host. To study its function new methodologies are necessary and the most appropriate one seems to be metaproteomics. The lack of studies in this field requires a deeply research in the most accurate workflow to better comprehend such complex samples. In this paper, five different methodologies have been compared, mainly in the most critical steps in classical proteomics and the methodology chosen was validated in a real case study in obese animals.
Collapse
Affiliation(s)
- Maria Guirro
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, Spain; Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Andrea Costa
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Andreu Gual-Grau
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, Spain
| | - Adrià Ceretó-Massagué
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain; Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, Tarragona, Spain
| | - Adrià Hernández
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Helena Torrell
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Lluís Arola
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, Spain; Eurecat, Centre Tecnològic de Catalunya, Biotechnological Area, Reus, Spain
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain.
| |
Collapse
|
5
|
Grothjan JJ, Young EB. Diverse microbial communities hosted by the model carnivorous pitcher plant Sarracenia purpurea: analysis of both bacterial and eukaryotic composition across distinct host plant populations. PeerJ 2019; 7:e6392. [PMID: 30805246 PMCID: PMC6383556 DOI: 10.7717/peerj.6392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The pitcher plant Sarracenia purpurea supplements nutrient acquisition through carnivory, capturing insect prey which are digested by a food web community of eukaryotes and bacteria. While the food web invertebrates are well studied, and some recent studies have characterized bacteria, detailed genetic analysis of eukaryotic diversity is lacking. This study aimed to compare eukaryotic and bacterial composition and diversity of pitcher communities within and between populations of host plants in nearby but distinct wetland habitats, and to characterize microbial functions across populations and in comparison with another freshwater community. METHODS Pitcher fluid was sampled from the two wetlands, Cedarburg and Sapa Bogs, community DNA was extracted, and 16S and 18S rRNA amplicons were sequenced and data processed for community-level comparisons. RESULTS AND CONCLUSIONS Bacterial diversity in the small pitcher volume rivaled that of larger aquatic communities. Between pitcher plant populations, several bacterial families (Kiloniellaceae, Acetobacteraceae, Xanthobacteraceae, Sanguibacteraceae, Oligoflexaceae, Nitrosomonadaceae, Chromatiaceae, Saprospiraceae) were significantly higher in one population. However, although predicted pitcher bacterial functions were distinct from other freshwater communities, especially for some amino acid metabolism, functions were similar across all the pitchers in the two populations. This suggests some functional redundancy among bacterial taxa, and that functions converge to achieve similar food web processes. The sequencing identified a previously under-appreciated high diversity of ciliates, Acari mites, fungi and flagellates in pitcher communities; the most abundant sequences from eukaryotic taxa were Oligohymenophorea ciliates, millipedes and Ichthyosporea flagellates. Two thirds of taxa were identified as food web inhabitants and less than one third as prey organisms. Although eukaryotic composition was not significantly different between populations, there were different species of core taxonomic groups present in different pitchers-these differences may be driven by wetland habitats providing different populations to colonize new pitchers. Eukaryotic composition was more variable than bacterial composition, and there was a poor relationship between bacterial and eukaryotic composition within individual pitchers, suggesting that colonization by eukaryotes may be more stochastic than for bacteria, and bacterial recruitment to pitchers may involve factors other than prey capture and colonization by eukaryotic food web inhabitants.
Collapse
Affiliation(s)
- Jacob J. Grothjan
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Erica B. Young
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| |
Collapse
|
6
|
Bittleston LS, Wolock CJ, Yahya BE, Chan XY, Chan KG, Pierce NE, Pringle A. Convergence between the microcosms of Southeast Asian and North American pitcher plants. eLife 2018; 7:36741. [PMID: 30152327 PMCID: PMC6130972 DOI: 10.7554/elife.36741] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/08/2018] [Indexed: 01/11/2023] Open
Abstract
The ‘pitchers’ of carnivorous pitcher plants are exquisite examples of convergent evolution. An open question is whether the living communities housed in pitchers also converge in structure or function. Using samples from more than 330 field-collected pitchers of eight species of Southeast Asian Nepenthes and six species of North American Sarracenia, we demonstrate that the pitcher microcosms, or miniature ecosystems with complex communities, are strikingly similar. Compared to communities from surrounding habitats, pitcher communities house fewer species. While communities associated with the two genera contain different microbial organisms and arthropods, the species are predominantly from the same phylogenetic clades. Microbiomes from both genera are enriched in degradation pathways and have high abundances of key degradation enzymes. Moreover, in a manipulative field experiment, Nepenthes pitchers placed in a North American bog assembled Sarracenia-like communities. An understanding of the convergent interactions in pitcher microcosms facilitates identification of selective pressures shaping the communities. The ecosystems found across the Earth, including in forests, lakes and prairies, consist of communities of plants, animals and microbes. How these organisms interact with each other determines which ones grow and thrive. We still do not understand how communities form: why different species exist where they do, and what enables them to survive in different locations. This knowledge is particularly limited with regard to communities of microbes because they are hard to see and count. Pitcher plants are an ideal system for studying how communities and ecosystems assemble. The pitcher-shaped leaves of these plants each contain small aquatic communities of microbes and arthropods (including insects and mites) that can be relatively easily studied. Because unrelated groups of plants have evolved pitchers at different times and on different continents, these communities can also be used to explore how evolutionary history and the current environment determine which species thrive in a particular location. Bittleston et al. sampled the DNA of the communities living within 330 pitchers from various North American and Southeast Asian pitcher plant species. This revealed that very distantly related plants on opposite sides of the planet have pitchers that host similar communities, with the organisms found in one pitcher plant often closely related to the organisms found in others. The genes within the community’s DNA also shared many functions, with the majority of shared genes devoted to digesting captured insect prey. Bittleston et al. also relocated pitcher plants from Southeast Asia to grow alongside North American species and found the same microbes and arthropods colonizing both groups, indicating that the different types of pitchers present a similar habitat. Overall, the results of the experiments performed by Bittleston et al. suggest that certain kinds of interactions between species (such as between the pitcher plants and their microbes) can evolve independently in different parts of the world. Researchers can use these interactions to learn more about how communities and ecosystems form. With a greater understanding of the Earth’s ecosystems, it will be easier to protect them and predict how they will fare as global conditions change.
Collapse
Affiliation(s)
- Leonora S Bittleston
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Museum of Comparative Zoology, Harvard University, Cambridge, United States
| | - Charles J Wolock
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Museum of Comparative Zoology, Harvard University, Cambridge, United States
| | - Bakhtiar E Yahya
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Xin Yue Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Museum of Comparative Zoology, Harvard University, Cambridge, United States
| | - Anne Pringle
- Departments of Botany and Bacteriology, University of Wisconsin-Madison, Wisconsin, United States
| |
Collapse
|
7
|
Lau MK, Baiser B, Northrop A, Gotelli NJ, Ellison AM. Regime shifts and hysteresis in the pitcher-plant microecosystem. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|