1
|
Liang J, Cai Y, Zhu Z, Feng JC, Zhang S, Wan H, Zhang X. Anthropogenic nitrogen pollution impacts saltmarsh resilience with inhibition of seedling establishment and population dispersal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171940. [PMID: 38527539 DOI: 10.1016/j.scitotenv.2024.171940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Saltmarsh, a prominent buffer ecosystem, has been identified as an important sink for nitrogen (N) pollutants from marine- and land-based anthropogenic activities. However, how the enriched anthropogenic N impacts saltmarsh sustainability has been neglected due to limited understanding of marsh resilience based on seedling establishment and population dispersal under anthropogenic N inputs. This study combined mesocosm experiments and model simulations to quantify the effects of increased anthropogenic N on the seedling-based vegetation expansion of Spartina alterniflora. The results indicated that seedling survivals, growth rates, and morphological indicators were inhibited by 20.08 %, 37.14 %, and > 35.56 %, respectively, under 1.5 gN/kg anthropogenic N. The sensitivity rate of vegetation expansion was increased by 70 % with 1 gN/kg increased N concentration under the scenario of low seedling density (< 15 m/yr). These findings revealed an important unidentified weakness of the marsh development process to anthropogenic N inputs. Finally, we highlighted the importance of appropriate protection measures to control nutrient pollution in salt marshes. Our study provides new insights for enhancing the resilience and sustainability of saltmarsh ecosystems.
Collapse
Affiliation(s)
- Jianzhen Liang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhenchang Zhu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jing-Chun Feng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Si Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hang Wan
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaodong Zhang
- College of Environmental Science and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Zengel S, Weaver J, Mendelssohn IA, Graham SA, Lin Q, Hester MW, Willis JM, Silliman BR, Fleeger JW, McClenachan G, Rabalais NN, Turner RE, Hughes AR, Cebrian J, Deis DR, Rutherford N, Roberts BJ. Meta-analysis of salt marsh vegetation impacts and recovery: a synthesis following the Deepwater Horizon oil spill. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02489. [PMID: 34741358 PMCID: PMC9285535 DOI: 10.1002/eap.2489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 08/13/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Marine oil spills continue to be a global issue, heightened by spill events such as the 2010 Deepwater Horizon spill in the Gulf of Mexico, the largest marine oil spill in US waters and among the largest worldwide, affecting over 1,000 km of sensitive wetland shorelines, primarily salt marshes supporting numerous ecosystem functions. To synthesize the effects of the oil spill on foundational vegetation species in the salt marsh ecosystem, Spartina alterniflora and Juncus roemerianus, we performed a meta-analysis using data from 10 studies and 255 sampling sites over seven years post-spill. We examined the hypotheses that the oil spill reduced plant cover, stem density, vegetation height, aboveground biomass, and belowground biomass, and tracked the degree of effects temporally to estimate recovery time frames. All plant metrics indicated impacts from oiling, with 20-100% maximum reductions depending on oiling level and marsh zone. Peak reductions of ~70-90% in total plant cover, total aboveground biomass, and belowground biomass were observed for heavily oiled sites at the marsh edge. Both Spartina and Juncus were impacted, with Juncus affected to a greater degree. Most plant metrics had recovery time frames of three years or longer, including multiple metrics with incomplete recovery over the duration of our data, at least seven years post-spill. Belowground biomass was particularly concerning, because it declined over time in contrast with recovery trends in most aboveground metrics, serving as a strong indicator of ongoing impact, limited recovery, and impaired resilience. We conclude that the Deepwater Horizon spill had multiyear impacts on salt marsh vegetation, with full recovery likely to exceed 10 years, particularly in heavily oiled marshes, where erosion may preclude full recovery. Vegetation impacts and delayed recovery is likely to have exerted substantial influences on ecosystem processes and associated species, especially along heavily oiled shorelines. Our synthesis affords a greater understanding of ecosystem impacts and recovery following the Deepwater Horizon oil spill, and informs environmental impact analysis, contingency planning, emergency response, damage assessment, and restoration efforts related to oil spills.
Collapse
Affiliation(s)
- Scott Zengel
- Research Planning, Inc. (RPI)TallahasseeFlorida32303USA
| | | | | | - Sean A. Graham
- Gulf South Research CorporationBaton RougeLouisiana70820USA
| | - Qianxin Lin
- Louisiana State UniversityBaton RougeLouisiana70803USA
| | - Mark W. Hester
- University of Louisiana at LafayetteLafayetteLouisiana70504USA
| | | | | | | | | | - Nancy N. Rabalais
- Louisiana State UniversityBaton RougeLouisiana70803USA
- Louisiana Universities Marine ConsortiumChauvinLouisiana70344USA
| | | | - A. Randall Hughes
- Northeastern University Marine Science CenterNahantMassachusetts01908USA
| | - Just Cebrian
- Northern Gulf InstituteStennis Space CenterMississippi State UniversityStarkvilleMississippi39529USA
| | | | - Nicolle Rutherford
- National Oceanographic and Atmospheric Administration (NOAA)SeattleWashington98115USA
| | - Brian J. Roberts
- Louisiana Universities Marine ConsortiumChauvinLouisiana70344USA
| |
Collapse
|
3
|
Deis DR, Fleeger JW, Johnson DS, Mendelssohn IA, Lin Q, Graham SA, Zengel S, Hou A. Recovery of the salt marsh periwinkle (Littoraria irrorata) 9 years after the Deepwater Horizon oil spill: Size matters. MARINE POLLUTION BULLETIN 2020; 160:111581. [PMID: 32890962 DOI: 10.1016/j.marpolbul.2020.111581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Prior studies indicated salt marsh periwinkles (Littoraria irrorata) were strongly impacted in heavily oiled marshes for at least 5 years following the Deepwater Horizon oil spill. Here, we detail longer-term effects and recovery over nine years. Our analysis found that neither density nor population size structure recovered at heavily oiled sites where snails were smaller and variability in size structure and density was increased. Total aboveground live plant biomass and stem density remained lower over time in heavily oiled marshes, and we speculate that the resulting more open canopy stimulated benthic microalgal production contributing to high spring periwinkle densities or that the lower stem density reduced the ability of subadults and small adults to escape predation. Our data indicate that periwinkle population recovery may take one to two decades after the oil spill at moderately oiled and heavily oiled sites, respectively.
Collapse
Affiliation(s)
| | - John W Fleeger
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David S Johnson
- Department of Biological Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Irving A Mendelssohn
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Qianxin Lin
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sean A Graham
- Gulf South Research Corporation, Baton Rouge, LA 70820, USA
| | - Scott Zengel
- Research Planning, Inc., Tallahassee, FL 32303, USA
| | - Aixin Hou
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
Fleeger JW, Johnson DS, Zengel S, Mendelssohn IA, Deis DR, Graham SA, Lin Q, Christman MC, Riggio MR, Pant M. Macroinfauna responses and recovery trajectories after an oil spill differ from those following saltmarsh restoration. MARINE ENVIRONMENTAL RESEARCH 2020; 155:104881. [PMID: 32072985 DOI: 10.1016/j.marenvres.2020.104881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Given the severity of injuries to biota in coastal wetlands from the Deepwater Horizon oil spill (DWH) and the resulting availability of funding for restoration, information on impacted salt marshes and biotic development of restored marshes may both help inform marsh restoration planning in the near term and for future spills. Accordingly, we performed a meta-analysis to model a restoration trajectory of total macroinfauna density in constructed marshes (studied for ~30 y), and with a previously published restoration trajectory for amphipods, we compared these to recovery curves for total macroinfauna and amphipods from DWH impacted marshes (over 8.5 y). Total macroinfauna and amphipod densities in constructed marshes did not consistently reach equivalency with reference sites before 20 y, yet in heavily oiled marshes recovery occurred by 4.5 y post spill (although it is unlikely that macroinfaunal community composition fully recovered). These differences were probably due to initial conditions (e.g., higher initial levels of belowground organic matter in oiled marshes) that were more conducive to recovery as compared to constructed marshes. Furthermore, we found that amphipod trajectories were distinctly different in constructed and oiled marshes as densities at oiled sites exceeded that of reference sites by as much as 20x during much of the recovery period. Amphipods may have responded to the rapid increase and high biomass of benthic microalgae following the spill. These results indicate that biotic responses after an oil spill may be quantitatively different than those following restoration, even for heavily oiled marshes that were initially denuded of vegetation. Our dual trajectories for oil spill recovery and restoration development for macroinfauna should help guide restoration planning and assessment following the DWH as well as for restoration scaling for future spills.
Collapse
Affiliation(s)
- J W Fleeger
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - D S Johnson
- Department of Biological Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, 23062, USA
| | - S Zengel
- Research Planning, Inc. (RPI), 247 E. 7th Ave, Tallahassee, FL, 32303, USA
| | - I A Mendelssohn
- Department of Oceanography and Coastal Sciences, Louisiana State University, 70803, USA
| | - D R Deis
- Atkins, Jacksonville, FL, 32256, USA
| | - S A Graham
- Gulf South Research Corporation, 8081 Innovation Park Dr, Baton Rouge, LA, 70820, USA
| | - Q Lin
- Department of Oceanography and Coastal Sciences, Louisiana State University, 70803, USA
| | - M C Christman
- MCC Statistical Consulting, LLC, 2219 NW 23rd Terrace, Gainesville, FL, 32605, USA
| | - M R Riggio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - M Pant
- Department of Biological Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, 23062, USA
| |
Collapse
|