1
|
Mazorra-Alonso M, Peralta-Sánchez JM, Martín-Vivaldi M, Martínez-Bueno M, Gómez RN, Soler JJ. Volatiles of symbiotic bacterial origin explain ectoparasitism and fledging success of hoopoes. Anim Microbiome 2024; 6:26. [PMID: 38725090 PMCID: PMC11084096 DOI: 10.1186/s42523-024-00312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Some parasites use olfactory cues to detect their hosts and, since bacterial symbionts are partially responsible for animal odours, they could influence host parasitism. By autoclaving nest materials of hoopoe (Upupa epops) nests before reproduction started, we explored the hypothetical links between host-associated bacteria, volatiles and parasitism. During the nestling stage, we (i) estimated the level of ectoparasitism by chewing lice (Suborder Mallophaga) in adult hoopoe females and by Carnus haemapterus flies in nestlings, and (ii) characterized microbial communities and volatile profiles of nest environments (nest material and nest cavity, respectively) and uropygial secretions. RESULTS Experimental nests had less diverse bacterial communities and more diverse volatile profiles than control nests, while occupants experienced lower intensity of parasitism in experimental than in control nests. The experiment also affected beta diversity of the microbial communities of nest material and of the volatiles of the nestling uropygial secretions. Moreover, microbial communities of uropygial secretions and of nest materials covaried with their volatile profiles, while the volatile profile of the bird secretions explained nest volatile profile. Finally, a subset of the volatiles and bacteria detected in the nest material and uropygial secretions were associated with the ectoparasitism intensity of both adult females and nestlings, and with fledging success. CONCLUSIONS These results show that a component of animal odours is linked with the microbial communities of the host and its reproductive environment, and emphasize that the associations between bacteria, ectoparasitism and reproductive success are partially mediated by volatiles of bacterial origin. Future work should focus on mechanisms underlying the detected patterns.
Collapse
Affiliation(s)
- Mónica Mazorra-Alonso
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain
| | | | - Manuel Martín-Vivaldi
- Departamento de Zoología, Universidad de Granada, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes. Universidad de Granada, Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes. Universidad de Granada, Granada, Spain
| | - Rafael Núñez Gómez
- Servicio de Instrumentación Científica, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain.
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes. Universidad de Granada, Granada, Spain.
| |
Collapse
|
2
|
Solomon G, Love AC, Vaziri GJ, Harvey J, Verrett T, Chernicky K, Simons S, Albert L, Chaves JA, Knutie SA. Effect of urbanization and parasitism on the gut microbiota of Darwin's finch nestlings. Mol Ecol 2023; 32:6059-6069. [PMID: 37837269 DOI: 10.1111/mec.17164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Host-associated microbiota can be affected by factors related to environmental change, such as urbanization and invasive species. For example, urban areas often affect food availability for animals, which can change their gut microbiota. Invasive parasites can also influence microbiota through competition or indirectly through a change in the host immune response. These interacting factors can have complex effects on host fitness, but few studies have disentangled the relationship between urbanization and parasitism on an organism's gut microbiota. To address this gap in knowledge, we investigated the effects of urbanization and parasitism by the invasive avian vampire fly (Philornis downsi) on the gut microbiota of nestling small ground finches (Geospiza fuliginosa) on San Cristóbal Island, Galápagos. We conducted a factorial study in which we experimentally manipulated parasite presence in an urban and nonurban area. Faeces were then collected from nestlings to characterize the gut microbiota (i.e. bacterial diversity and community composition). Although we did not find an interactive effect of urbanization and parasitism on the microbiota, we did find main effects of each variable. We found that urban nestlings had lower bacterial diversity and different relative abundances of taxa compared to nonurban nestlings, which could be mediated by introduction of the microbiota of the food items or changes in host physiology. Additionally, parasitized nestlings had lower bacterial richness than nonparasitized nestlings, which could be mediated by a change in the immune system. Overall, this study advances our understanding of the complex effects of anthropogenic stressors on the gut microbiota of birds.
Collapse
Affiliation(s)
- Gabrielle Solomon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Ashley C Love
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Grace J Vaziri
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Johanna Harvey
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Taylor Verrett
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Kiley Chernicky
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Shelby Simons
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Lauren Albert
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Jaime A Chaves
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Galapagos Science Center, Puerto Baquerizo Moreno, Galapagos, Ecuador
- Department of Biology, San Francisco State University, California, San Francisco, USA
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Institute for Systems Genomics, University of Connecticut, Connecticut, Storrs, USA
| |
Collapse
|
3
|
Hanski E, Khanyari M, Li J, Bates KA, Zuther S, Maiden MCJ, Kock R, Knowles SCL. Gut microbiota of the critically endangered Saiga antelope across two wild populations in a year without mass mortality. Sci Rep 2023; 13:17236. [PMID: 37821478 PMCID: PMC10567781 DOI: 10.1038/s41598-023-44393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023] Open
Abstract
The Saiga are migratory antelopes inhabiting the grasslands of Eurasia. Over the last century, Saiga have been pushed to the brink of extinction by mass mortality events and intense poaching. Yet, despite the high profile of the Saiga as an animal of conservation concern, little is known of its biology. In particular, the gut microbiota of Saiga has not been studied, despite its potential importance in health. Here, we characterise the gut microbiota of Saiga from two geographically distinct populations in Kazakhstan and compare it with that of other antelope species. We identified a consistent gut microbial diversity and composition among individuals and across two Saiga populations during a year without die-offs, with over 85% of bacterial genera being common to both populations despite vast geographic separation. We further show that the Saiga gut microbiota resembled that of five other antelopes. The putative causative agent of Saiga mass die-offs, Pasteurella multocida, was not detected in the Saiga microbiota. Our findings provide the first description of the Saiga gut microbiota, generating a baseline for future work investigating the microbiota's role in health and mass die-offs, and supporting the conservation of this critically endangered species.
Collapse
Affiliation(s)
- Eveliina Hanski
- Department of Biology, University of Oxford, Oxford, UK.
- Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | | | - Jingdi Li
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Steffen Zuther
- Association for the Conservation of Biodiversity of Kazakhstan, Astana, Kazakhstan
- Frankfurt Zoological Society, Frankfurt, Germany
| | | | - Richard Kock
- Centre for Emerging, Endemic and Exotic Diseases, The Royal Veterinary College, University of London, London, UK
| | | |
Collapse
|
4
|
Guan Y, Bao L, Zhou L, Dai C, Li Z, Zhang S, Shang Y, Niu W, Zhang Y, Wang H. Comparative analysis of the fecal microbiota of healthy and injured common kestrel ( Falco tinnunculus) from the Beijing Raptor Rescue Center. PeerJ 2023; 11:e15789. [PMID: 37637157 PMCID: PMC10452619 DOI: 10.7717/peerj.15789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2023] [Indexed: 08/29/2023] Open
Abstract
The gut microbiota is a complex ecosystem that interacts with many other factors to affect the health and disease states of the host. The common kestrel (Falco tinnunculus) is protected at the national level in China. However, the available sequencing data of the gut microbiota from the feces of wild common kestrels, especially for being rescued individuals by professional organization, remains limited. In the present study, we characterized the fecal bacterial communities of healthy and injured common kestrels, and compared the structure of their fecal microbiota by analyzing the V3-V4 region of the 16S rRNA gene using high-throughput sequencing technology with the Illumina MiSeq platform. We found that Firmicutes, Proteobacteria and Actinobacteria were the most predominant phyla in common kestrels. Further, the beta diversity analysis showed that changes in gut microbes were associated with injuries to the common kestrel. The Bacteroides/Firmicutes ratio was significantly lower in the injured group. At the genus level, Glutamicibacter showed significant difference in the two groups. The aim of our current study was to characterize the basic bacterial composition and community structure in the feces of healthy common kestrels, and then compare the differences in the fecal microbiota between healthy and injured individuals. Patescibacteria, Spirochaetes, and Glutamicibacter may be studied as potential biomarkers for certain diseases in raptors. The results could provide the basic data for additional research on the fecal microbiota of common kestrels and contribute to the rescue of wild raptors in the future.
Collapse
Affiliation(s)
- Yu Guan
- Beijing Normal University, Beijing, China
| | - Lei Bao
- Beijing Normal University, Beijing, China
| | - Lei Zhou
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Chang Dai
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Zhisai Li
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Shuai Zhang
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Yugang Shang
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | | | | | | |
Collapse
|
5
|
Zhao X, Ye W, Xu W, Xu N, Zheng J, Chen R, Liu H. Changes in the Diversity and Composition of Gut Microbiota of Red-Crowned Cranes (Grus japonensis) after Avian Influenza Vaccine and Anthelmintic Treatment. Animals (Basel) 2022; 12:ani12091183. [PMID: 35565609 PMCID: PMC9099658 DOI: 10.3390/ani12091183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 01/27/2023] Open
Abstract
Gut microbiota homeostasis is important for host health and well-being; however, drugs may affect the composition and function of the gut microbiota. Red-crowned cranes are a vulnerable species. Treatment of red-crowned cranes with avian influenza vaccines and anthelmintics has played pivotal roles in therapeutic management in zoos. To investigate the changes in the diversity and composition of gut microbiota after the avian influenza vaccine and anthelmintic treatment, we used 16S rRNA sequencing to obtain and compare the bacterial community composition before and after the treatment. The alpha diversity of the gut microbiota of red-crowned cranes decreased on the day of the treatment and then fluctuated over time. The composition of gut microbiota tended to be similar in the short term after the treatment, as supported by the beta diversity hierarchical cluster analysis. Only 3, 8, and 72 operational taxonomic units (OTUs) of the three individuals were shared among the five groups before and after treatment. The relative abundance of Firmicutes significantly increased to 99.04% ± 0.28% on the day of the treatment, in which the relative abundance of Lactobacillus was 93.33% ± 5.85%. KEGG pathways analysis indicated that the main function of the gut microbiota is involved in metabolism, and the present study indicates that the gut microbiota of red-crowned cranes is resilient to the avian influenza vaccine and anthelmintic, even disordered in the short term, and could recover over time. More individual experimentation and functional potential in metabolism are needed in the future to support animal disease control and optimal management in the zoo.
Collapse
Affiliation(s)
- Xinyi Zhao
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (W.Y.); (W.X.); (N.X.); (J.Z.)
| | - Wentao Ye
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (W.Y.); (W.X.); (N.X.); (J.Z.)
| | - Wei Xu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (W.Y.); (W.X.); (N.X.); (J.Z.)
| | - Nan Xu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (W.Y.); (W.X.); (N.X.); (J.Z.)
| | - Jiajun Zheng
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (W.Y.); (W.X.); (N.X.); (J.Z.)
| | - Rong Chen
- Nanjing Hongshan Forest Zoo, Nanjing 210028, China;
| | - Hongyi Liu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (W.Y.); (W.X.); (N.X.); (J.Z.)
- Correspondence:
| |
Collapse
|
6
|
West AG, DeLaunay A, Marsh P, Perry EK, Jolly M, Gartrell BD, Pas A, Digby A, Taylor MW. Gut microbiota of the threatened takahē: biogeographic patterns and conservation implications. Anim Microbiome 2022; 4:11. [PMID: 35078539 PMCID: PMC8790836 DOI: 10.1186/s42523-021-00158-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Aotearoa New Zealand takahē (Porphyrio hochstetteri), once thought to be extinct, is a nationally threatened flightless rail under intensive conservation management. While there has been previous research into disease-related microbes in takahē, little is known about the microbes present in the gastrointestinal tract. Given the importance of gut-associated microbes to herbivore nutrition and immunity, knowledge of these communities is likely to be of considerable conservation value. Here we examined the gut microbiotas of 57 takahē at eight separate locations across Aotearoa New Zealand. RESULTS Faecal samples, taken as a proxy for the hindgut bacterial community, were subjected to 16S rRNA gene amplicon sequencing using Illumina MiSeq. Phylogenetic analysis of > 2200 amplicon sequence variants (ASVs) revealed nine main bacterial phyla (Acidobacteriota, Actinobacteriota, Bacteroidota, Campilobacterota, Firmicutes, Fusobacteriota, Planctomycetota, Proteobacteria, and Verrucomicrobiota) that accounted for the majority of sequence reads. Location was a significant effect (p value < 0.001, 9999 permutations) that accounted for 32% of the observed microbiota variation. One ASV, classified as Lactobacillus aviarius, was present in all samples at an average relative abundance of 17% (SD = 23.20). There was strong evidence (p = 0.002) for a difference in the abundance of the genus Lactobacillus between locations. A common commensal bacterium previously described in takahē, Campylobacter spp., was also detected in most faecal samples. CONCLUSIONS Location plays a pivotal role in the observed variation among takahē gut bacterial communities and is potentially due to factors such as supplemental feeding and medical treatment experienced by birds housed in captivity at one of the eight sampled sites. These data present a first glimpse of the previously unexplored takahē gut microbiota and provide a baseline for future microbiological studies and conservation efforts.
Collapse
Affiliation(s)
- Annie G West
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Anne DeLaunay
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Phil Marsh
- Takahē Recovery Programme, Department of Conservation, Lakefront Drive, Te Anau, New Zealand
| | - Elena K Perry
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Megan Jolly
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Brett D Gartrell
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - An Pas
- New Zealand Centre for Conservation Medicine, Auckland Zoo, Auckland, New Zealand
| | - Andrew Digby
- Takahē Recovery Programme, Department of Conservation, Lakefront Drive, Te Anau, New Zealand
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
7
|
Couch CE, Epps CW. Host, microbiome, and complex space: applying population and landscape genetic approaches to gut microbiome research in wild populations. J Hered 2022; 113:221-234. [PMID: 34983061 DOI: 10.1093/jhered/esab078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/03/2022] [Indexed: 11/14/2022] Open
Abstract
In recent years, emerging sequencing technologies and computational tools have driven a tidal wave of research on host-associated microbiomes, particularly the gut microbiome. These studies demonstrate numerous connections between the gut microbiome and vital host functions, primarily in humans, model organisms, and domestic animals. As the adaptive importance of the gut microbiome becomes clearer, interest in studying the gut microbiomes of wild populations has increased, in part due to the potential for discovering conservation applications. The study of wildlife gut microbiomes holds many new challenges and opportunities due to the complex genetic, spatial, and environmental structure of wild host populations, and the potential for these factors to interact with the microbiome. The emerging picture of adaptive coevolution in host-microbiome relationships highlights the importance of understanding microbiome variation in the context of host population genetics and landscape heterogeneity across a wide range of host populations. We propose a conceptual framework for understanding wildlife gut microbiomes in relation to landscape variables and host population genetics, including the potential of approaches derived from landscape genetics. We use this framework to review current research, synthesize important trends, highlight implications for conservation, and recommend future directions for research. Specifically, we focus on how spatial structure and environmental variation interact with host population genetics and microbiome variation in natural populations, and what we can learn from how these patterns of covariation differ depending on host ecological and evolutionary traits.
Collapse
Affiliation(s)
- Claire E Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Clinton W Epps
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
8
|
Lafuente E, Lürig MD, Rövekamp M, Matthews B, Buser C, Vorburger C, Räsänen K. Building on 150 Years of Knowledge: The Freshwater Isopod Asellus aquaticus as an Integrative Eco-Evolutionary Model System. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.748212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Interactions between organisms and their environments are central to how biological diversity arises and how natural populations and ecosystems respond to environmental change. These interactions involve processes by which phenotypes are affected by or respond to external conditions (e.g., via phenotypic plasticity or natural selection) as well as processes by which organisms reciprocally interact with the environment (e.g., via eco-evolutionary feedbacks). Organism-environment interactions can be highly dynamic and operate on different hierarchical levels, from genes and phenotypes to populations, communities, and ecosystems. Therefore, the study of organism-environment interactions requires integrative approaches and model systems that are suitable for studies across different hierarchical levels. Here, we introduce the freshwater isopod Asellus aquaticus, a keystone species and an emerging invertebrate model system, as a prime candidate to address fundamental questions in ecology and evolution, and the interfaces therein. We review relevant fields of research that have used A. aquaticus and draft a set of specific scientific questions that can be answered using this species. Specifically, we propose that studies on A. aquaticus can help understanding (i) the influence of host-microbiome interactions on organismal and ecosystem function, (ii) the relevance of biotic interactions in ecosystem processes, and (iii) how ecological conditions and evolutionary forces facilitate phenotypic diversification.
Collapse
|
9
|
Common LK, Sumasgutner P, Dudaniec RY, Colombelli-Négrel D, Kleindorfer S. Avian vampire fly (Philornis downsi) mortality differs across Darwin's finch host species. Sci Rep 2021; 11:15832. [PMID: 34349147 PMCID: PMC8338931 DOI: 10.1038/s41598-021-94996-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
In invasive parasites, generalism is considered advantageous during the initial phase of introduction. Thereafter, fitness costs to parasites, such as host-specific mortality, can drive parasites towards specialism to avoid costly hosts. It is important to determine changes in host specificity of invasive populations to understand host-parasite dynamics and their effects on vulnerable host populations. We examined changes in mortality in the introduced avian vampire fly (Philornis downsi) (Diptera: Muscidae), a generalist myasis-causing ectoparasite, between 2004 and 2020 on Floreana Island (Galápagos). Mortality was measured as the proportion of immature larvae found upon host nest termination. Over the time period, the avian vampire fly was most abundant and had low mortality in nests of the critically endangered medium tree finch (Camarhynchus pauper) and had the highest mortality in nests of hybrid tree finches (Camarhynchus spp.). Low larval mortality was also found in small tree (Camarhynchus parvulus) and small ground finch (Geospiza fuliginosa) nests. Selection could favour avian vampire flies that select medium tree finch nests and/or avoid hybrid nests. Overall, the finding of differences in avian vampire fly survival across host species is parsimonious with the idea that the introduced fly may be evolving towards host specialisation.
Collapse
Affiliation(s)
- Lauren K Common
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5001, Australia
| | - Petra Sumasgutner
- Department of Behavioral and Cognitive Biology, Konrad Lorenz Research Center, Core Facility for Behavior and Cognition, University of Vienna, Vienna, Austria
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, NSW , 2109, Australia
| | | | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5001, Australia. .,Department of Behavioral and Cognitive Biology, Konrad Lorenz Research Center, Core Facility for Behavior and Cognition, University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Kim D, Shaw AK. Migration and tolerance shape host behaviour and response to parasite infection. J Anim Ecol 2021; 90:2315-2324. [PMID: 34014562 DOI: 10.1111/1365-2656.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/03/2021] [Indexed: 11/26/2022]
Abstract
Numerous theoretical models have demonstrated that migration, a seasonal animal movement behaviour, can minimize the risks and costs of parasite infection. Past work on migration-infection interactions assumes migration is the only strategy available to organisms for dealing with the parasite infection, that is they migrate to a different environment to recover or escape from infection. Thus, migration is similar to the non-spatial strategy of resistance, where hosts prevent infection or kill parasites once infected. However, an alternative defence strategy is to tolerate the infection and experience a lower cost to the infection. To our knowledge, no studies have examined how migration can change based on combining two host strategies (migration and tolerance) for dealing with parasites. In this paper, we aim to understand how both parasite transmission and infection tolerance can influence the host's migratory behaviour. We constructed a model that incorporates two host strategies (migration and tolerance) to understand whether allowing for tolerance affects the proportion of the population that migrates at equilibrium in response to infection. We show that the benefits of tolerance can either decrease or increase the host's migration. Also, if the benefit of migration is great, then individuals are more likely to migrate regardless of the presence of tolerance. Finally, we find that the transmission rate of parasite infection can either decrease or increase the tolerant host's migration, depending on the cost of migration. These findings highlight that adopting two defence strategies is not always beneficial to the hosts. Instead, a single strategy is often better, depending on the costs and benefits of the strategies and infection pressures. Our work further suggests that multiple host-defence strategies as a potential explanation for the evolution of migration to minimize the parasite infection. Moreover, migration can also affect the ecological and evolutionary dynamics of parasite-host interactions.
Collapse
Affiliation(s)
- Dongmin Kim
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Allison K Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
11
|
Jose PA, Ben-Yosef M, Lahuatte P, Causton CE, Heimpel GE, Jurkevitch E, Yuval B. Shifting microbiomes complement life stage transitions and diet of the bird parasite Philornis downsi from the Galapagos Islands. Environ Microbiol 2021; 23:5014-5029. [PMID: 33587780 DOI: 10.1111/1462-2920.15435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/12/2021] [Indexed: 01/04/2023]
Abstract
Domestication disconnects an animal from its natural environment and diet, imposing changes in the attendant microbial community. We examine these changes in Philornis downsi (Muscidae), an invasive parasitic fly of land birds in the Galapagos Islands. Using a 16S rDNA profiling approach we studied the microbiome of larvae and adults of wild and laboratory-reared populations. These populations diverged in their microbiomes, significantly more so in larval than in adult flies. In field-collected second-instar larvae, Klebsiella (70.3%) was the most abundant taxon, while in the laboratory Ignatzschineria and Providencia made up 89.2% of the community. In adults, Gilliamella and Dysgonomonas were key members of the core microbiome of field-derived females and males but had no or very low representation in the laboratory. Adult flies harbour sex-specific microbial consortia in their gut, as male core microbiomes were significantly dominated by Klebsiella. Thus, P. downsi microbiomes are dynamic and shift correspondingly with life cycle and diet. Sex-specific foraging behaviour of adult flies and nest conditions, which are absent in the laboratory, may contribute to shaping distinct larval, and adult male and female microbiomes. We discuss these findings in the context of microbe-host co-evolution and the implications for control measures.
Collapse
Affiliation(s)
- Polpass Arul Jose
- Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7612001, Israel
| | - Michael Ben-Yosef
- Department of Entomology, Agricultural Research Organization, Gilat Center, M. P. Negev, 85280, Israel
| | - Paola Lahuatte
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos, 200350, Ecuador
| | - Charlotte E Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos, 200350, Ecuador
| | - George E Heimpel
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, MN, 55108, USA
| | - Edouard Jurkevitch
- Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7612001, Israel
| | - Boaz Yuval
- Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7612001, Israel
| |
Collapse
|
12
|
Kuthyar S, Kowalewski MM, Roellig DM, Mallott EK, Zeng Y, Gillespie TR, Amato KR. Effects of anthropogenic habitat disturbance and Giardia duodenalis infection on a sentinel species' gut bacteria. Ecol Evol 2021; 11:45-57. [PMID: 33437414 PMCID: PMC7790644 DOI: 10.1002/ece3.6910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
Habitat disturbance, a common consequence of anthropogenic land use practices, creates human-animal interfaces where humans, wildlife, and domestic species can interact. These altered habitats can influence host-microbe dynamics, leading to potential downstream effects on host physiology and health. Here, we explored the effect of ecological overlap with humans and domestic species and infection with the protozoan parasite Giardia duodenalis on the bacteria of black and gold howler monkeys (Alouatta caraya), a key sentinel species, in northeastern Argentina. Fecal samples were screened for Giardia duodenalis infection using a nested PCR reaction, and the gut bacterial community was characterized using 16S rRNA gene amplicon sequencing. Habitat type was correlated with variation in A. caraya gut bacterial community composition but did not affect gut bacterial diversity. Giardia presence did not have a universal effect on A. caraya gut bacteria across habitats, perhaps due to the high infection prevalence across all habitats. However, some bacterial taxa were found to vary with Giardia infection. While A. caraya's behavioral plasticity and dietary flexibility allow them to exploit a range of habitat conditions, habitats are generally becoming more anthropogenically disturbed and, thus, less hospitable. Alterations in gut bacterial community dynamics are one possible indicator of negative health outcomes for A. caraya in these environments, since changes in host-microbe relationships due to stressors from habitat disturbance may lead to negative repercussions for host health. These dynamics are likely relevant for understanding organism responses to environmental change in other mammals.
Collapse
Affiliation(s)
- Sahana Kuthyar
- Department of AnthropologyNorthwestern UniversityEvanstonILUSA
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
| | - Martin M. Kowalewski
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
- Estación Biológica CorrientesMuseo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN‐CONICET)CorrientesArgentina
| | - Dawn M. Roellig
- National Center for Emerging and Zoonotic Infectious DiseasesCenters for Disease Control and Prevention (CDC)AtlantaGAUSA
| | | | - Yan Zeng
- Department of AnthropologyNorthwestern UniversityEvanstonILUSA
| | - Thomas R. Gillespie
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
| | | |
Collapse
|
13
|
Ohmer MEB, Costantini D, Czirják GÁ, Downs CJ, Ferguson LV, Flies A, Franklin CE, Kayigwe AN, Knutie S, Richards-Zawacki CL, Cramp RL. Applied ecoimmunology: using immunological tools to improve conservation efforts in a changing world. CONSERVATION PHYSIOLOGY 2021; 9:coab074. [PMID: 34512994 PMCID: PMC8422949 DOI: 10.1093/conphys/coab074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 05/11/2023]
Abstract
Ecoimmunology is a rapidly developing field that explores how the environment shapes immune function, which in turn influences host-parasite relationships and disease outcomes. Host immune defence is a key fitness determinant because it underlies the capacity of animals to resist or tolerate potential infections. Importantly, immune function can be suppressed, depressed, reconfigured or stimulated by exposure to rapidly changing environmental drivers like temperature, pollutants and food availability. Thus, hosts may experience trade-offs resulting from altered investment in immune function under environmental stressors. As such, approaches in ecoimmunology can provide powerful tools to assist in the conservation of wildlife. Here, we provide case studies that explore the diverse ways that ecoimmunology can inform and advance conservation efforts, from understanding how Galapagos finches will fare with introduced parasites, to using methods from human oncology to design vaccines against a transmissible cancer in Tasmanian devils. In addition, we discuss the future of ecoimmunology and present 10 questions that can help guide this emerging field to better inform conservation decisions and biodiversity protection. From better linking changes in immune function to disease outcomes under different environmental conditions, to understanding how individual variation contributes to disease dynamics in wild populations, there is immense potential for ecoimmunology to inform the conservation of imperilled hosts in the face of new and re-emerging pathogens, in addition to improving the detection and management of emerging potential zoonoses.
Collapse
Affiliation(s)
- Michel E B Ohmer
- Living Earth Collaborative, Washington University in St. Louis, MO 63130, USA
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National d’Histoire Naturelle, CNRS, 57 Rue Cuvier, CP32, 75005, Paris, France
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Cynthia J Downs
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Laura V Ferguson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andy Flies
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
| | - Ahab N Kayigwe
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Sarah Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268, USA
| | | | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
- Corresponding author: School of Biological Sciences, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|
14
|
Kleindorfer S, Custance G, Peters KJ, Sulloway FJ. Introduced parasite changes host phenotype, mating signal and hybridization risk: Philornis downsi effects on Darwin's finch song. Proc Biol Sci 2019; 286:20190461. [PMID: 31185871 DOI: 10.1098/rspb.2019.0461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduced parasites that alter their host's mating signal can change the evolutionary trajectory of a species through sexual selection. Darwin's Camarhynchus finches are threatened by the introduced fly Philornis downsi that is thought to have accidentally arrived on the Galapagos Islands during the 1960s. The P. downsi larvae feed on the blood and tissue of developing finches, causing on average approximately 55% in-nest mortality and enlarged naris size in survivors. Here we test if enlarged naris size is associated with song characteristics and vocal deviation in the small tree finch ( Camarhynchus parvulus), the critically endangered medium tree finch ( C. pauper) and the recently observed hybrid tree finch group ( Camarhynchus hybrids). Male C. parvulus and C. pauper with enlarged naris size produced song with lower maximum frequency and greater vocal deviation, but there was no significant association in hybrids. Less vocal deviation predicted faster pairing success in both parental species. Finally, C. pauper males with normal naris size produced species-specific song, but male C. pauper with enlarged naris size had song that was indistinguishable from other tree finches. When parasites disrupt host mating signal, they may also facilitate hybridization. Here we show how parasite-induced naris enlargement affects vocal quality, resulting in blurred species mating signals.
Collapse
Affiliation(s)
- Sonia Kleindorfer
- 1 College of Science and Engineering, Flinders University , Adelaide 5001 , Australia.,2 Konrad Lorenz Research Station and Department of Behavioural Biology, University of Vienna , Vienna , Austria
| | - Georgina Custance
- 1 College of Science and Engineering, Flinders University , Adelaide 5001 , Australia
| | - Katharina J Peters
- 1 College of Science and Engineering, Flinders University , Adelaide 5001 , Australia
| | - Frank J Sulloway
- 3 Department of Psychology, University of California , 2121 Berkeley Way, Room 3302, 4125 Tolman Hall, Berkeley, CA 94720 , USA
| |
Collapse
|
15
|
Knutie SA, Chaves JA, Gotanda KM. Human activity can influence the gut microbiota of Darwin's finches in the Galapagos Islands. Mol Ecol 2019; 28:2441-2450. [DOI: 10.1111/mec.15088] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Sarah A. Knutie
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut
| | - Jaime A. Chaves
- Colegio de Ciencias Biológicas y Ambientales Universidad San Francisco de Quito Cumbayá Quito Ecuador
- Galápagos Science Center Puerto Baquerizo Moreno Ecuador
| | | |
Collapse
|
16
|
Trevelline BK, Fontaine SS, Hartup BK, Kohl KD. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc Biol Sci 2019; 286:20182448. [PMID: 30963956 PMCID: PMC6364583 DOI: 10.1098/rspb.2018.2448] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
The central aim of conservation biology is to understand and mitigate the effects of human activities on biodiversity. To successfully achieve this objective, researchers must take an interdisciplinary approach that fully considers the effects, both direct and indirect, of anthropogenic disturbances on wildlife physiology and health. A recent surge in research has revealed that host-associated microbiota-the archaeal, bacterial, fungal and viral communities residing on and inside organisms-profoundly influence animal health, and that these microbial communities can be drastically altered by anthropogenic activities. Therefore, conservation practitioners should consider the disruption of host-associated microbial diversity as a serious threat to wildlife populations. Despite the tremendous potential for microbiome research to improve conservation outcomes, few efforts have been made to truly integrate these fields. In this review, we call for the microbial renaissance of conservation biology, where biodiversity of host-associated microbiota is recognized as an essential component of wildlife management practices. Using evidence from the existing literature, we will examine the known effects of anthropogenic activities on the diversity of host-associated microbial communities and integrate approaches for maintaining microbial diversity to successfully achieve conservation objectives.
Collapse
Affiliation(s)
- Brian K. Trevelline
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samantha S. Fontaine
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Barry K. Hartup
- Department of Conservation Medicine, International Crane Foundation, Baraboo, WI, USA
- School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Kevin D. Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|