1
|
Chang X, Wang W, Zhou H. Nitrogen Acquisition by Invasive Plants: Species Preferential N Uptake Matching with Soil N Dynamics Contribute to Its Fitness and Domination. PLANTS (BASEL, SWITZERLAND) 2025; 14:748. [PMID: 40094724 PMCID: PMC11901465 DOI: 10.3390/plants14050748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Plant invasions play a significant role in global environmental change. Traditionally, it was believed that invasive plants absorb and utilize nitrogen (N) more efficiently than native plants by adjusting their preferred N forms in accordance with the dominant N forms present in the soil. More recently, invasive plants are now understood to optimize their N acquisition by directly mediating soil N transformations. This review highlights how exotic species optimize their nitrogen acquisition by influencing soil nitrogen dynamics based on their preferred nitrogen forms, and the various mechanisms, including biological nitrification inhibitor (BNI) release, pH alterations, and changes in nutrient stoichiometry (carbon to nitrogen ratio), that regulate the soil nitrogen dynamics of exotic plants. Generally, invasive plants accelerate soil gross nitrogen transformations to maintain a high supply of NH4+ and NO3- in nitrogen-rich ecosystems irrespective of their preference. However, they tend to minimize nitrogen losses to enhance nitrogen availability in nitrogen-poor ecosystems, where, in such situations, plants with different nitrogen preferences usually affect different nitrogen transformation processes. Therefore, a comprehensive understanding requires more situ data on the interactions between invasive plant species' preferential N form uptake and the characteristics of soil N transformations. Understanding the combination of these processes is essential to elucidate how exotic plants optimize nitrogen use efficiency (NUE) and minimize nitrogen losses through denitrification, leaching, or runoff, which are considered critical for the success of invasive plant species. This review also highlights some of the most recent discoveries in the responses of invasive plants to the different forms and amounts of N and how plants affect soil N transformations to optimize their N acquisition, emphasizing the significance of how plant-soil interactions potentially influence soil N dynamics.
Collapse
Affiliation(s)
- Xingang Chang
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Wenying Wang
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China;
| |
Collapse
|
2
|
L’Espérance E, Bouyoucef LS, Dozois JA, Yergeau E. Tipping the plant-microbe competition for nitrogen in agricultural soils. iScience 2024; 27:110973. [PMID: 39391734 PMCID: PMC11466649 DOI: 10.1016/j.isci.2024.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Nitrogen (N) is the most limiting nutrient in agroecosystems, and its indiscriminate application is at the center of the environmental challenges facing agriculture. To solve this dilemma, crops' nitrogen use efficiency (NUE) needs to increase - in other words, more of the applied nitrogen needs to reach humans. Microbes are the key to cracking this problem. Microbes use nitrogen as an energy source, an electron acceptor, or incorporate it in their biomass. These activities change the form and availability of nitrogen for crops' uptake, impacting its NUE, yields and produce quality. Plants (and microbes) have, however, evolved many mechanisms to compete for soil nitrogen. Understanding and harnessing these competitive mechanisms would enable us to tip the nitrogen balance to the advantage of crops. We will review these competitive mechanisms and highlight some approaches that were applied to reduce microbial competition for N in an agricultural context.
Collapse
Affiliation(s)
- Emmy L’Espérance
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Lilia Sabrina Bouyoucef
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Jessica A. Dozois
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Etienne Yergeau
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| |
Collapse
|
3
|
Przybylska MS, Violle C, Vile D, Scheepens JF, Munoz F, Tenllado Á, Vinyeta M, Le Roux X, Vasseur F. Can plants build their niche through modulation of soil microbial activities linked with nitrogen cycling? A test with Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 243:620-635. [PMID: 38812269 DOI: 10.1111/nph.19870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024]
Abstract
In natural systems, different plant species have been shown to modulate specific nitrogen (N) cycling processes so as to meet their N demand, thereby potentially influencing their own niche. This phenomenon might go beyond plant interactions with symbiotic microorganisms and affect the much less explored plant interactions with free-living microorganisms involved in soil N cycling, such as nitrifiers and denitrifiers. Here, we investigated variability in the modulation of soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively), and their ratio (NEA : DEA), across 193 Arabidopsis thaliana accessions. We studied the genetic and environmental determinants of such plant-soil interactions, and effects on plant biomass production in the next generation. We found that NEA, DEA, and NEA : DEA varied c. 30-, 15- and 60-fold, respectively, among A. thaliana genotypes and were related to genes linked with stress response, flowering, and nitrate nutrition, as well as to soil parameters at the geographic origin of the analysed genotypes. Moreover, plant-mediated N cycling activities correlated with the aboveground biomass of next-generation plants in home vs away nonautoclaved soil, suggesting a transgenerational impact of soil biotic conditioning on plant performance. Altogether, these findings suggest that nutrient-based plant niche construction may be much more widespread than previously thought.
Collapse
Affiliation(s)
- Maria Stefania Przybylska
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293, Montpellier, France
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, F-34060, Montpellier, France
- Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293, Montpellier, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, F-34060, Montpellier, France
| | - J F Scheepens
- Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - François Munoz
- LiPhy, Université Grenoble-Alpes, 38041, Grenoble, France
| | - Álvaro Tenllado
- LEM - Microbial Ecology Centre, INRAE (UMR 1418), CNRS (UMR 5557), University Lyon 1, University of Lyon, VetAgroSup, 69622, Villeurbanne, France
| | - Mariona Vinyeta
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293, Montpellier, France
| | - Xavier Le Roux
- LEM - Microbial Ecology Centre, INRAE (UMR 1418), CNRS (UMR 5557), University Lyon 1, University of Lyon, VetAgroSup, 69622, Villeurbanne, France
| | - François Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293, Montpellier, France
| |
Collapse
|
4
|
Cantarel AAM, Signoret A, Gervaix J, Beligon C, Béraud C, Boisselet C, Creuzé des Châtelliers C, Defour P, Delort A, Lacroix E, Lobreau C, Louvez E, Marais C, Simonin M, Piola F. Biological inhibition of denitrification (BDI): an early plant strategy for Fallopia × bohemica seedling development. ANNALS OF BOTANY 2024; 133:533-546. [PMID: 37970962 PMCID: PMC11037488 DOI: 10.1093/aob/mcad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIMS The successful plant Fallopia × bohemica presents interesting capacities for control of the soil nitrogen cycle at the adult stage, termed biological inhibition of denitrification (BDI). The BDI strategy allows the plant, via the production of secondary metabolites (procyanidins), to compete with the denitrifying microbial community and to divert nitrate from the soil for its benefit. In this study, we analysed whether seedlings of F. × bohemica can implement BDI at the seedling stage. We also determined whether soil nitrogen availability influences the implementation of BDI and seedling growth. METHODS We sowed achenes of F. × bohemica in soils representing a nitrogen gradient (six treatments) and harvested seedlings after 20 or 40 days of growth. The denitrification and related microbial communities (i.e. functional gene abundances of nirK and nirS), soil parameters (nitrate content and humidity) and plant performance (biomass, growth and root morphology) were determined. KEY RESULTS On soil without addition of nitrogen, BDI was observed after 20 days of growth, whereas a stimulation of denitrification was found after 40 days. The increase of soil N content had few effects on the activity and structure of the soil denitrifying community and on the plant biomasses or the relative growth rates. Correlations between plant and microbial parameters were observed after 20 days of growth, reflecting early and strong chemical interactions between plants and the denitrifying community, which decreased with plant growth after 40 days. CONCLUSIONS This study shows that an early BDI enhances the efficiency of nitrogen acquisition in the first weeks of growth, allowing for a conservative root strategy after 40 days. This switch to a conservative strategy involved resource storage, an altered allocation to above- and below-ground parts and an investment in fine roots. It now seems clear that this storage strategy starts at a very young age with early establishment of BDI, giving this clonal plant exceptional capacities for storage and multiplication.
Collapse
Affiliation(s)
- Amélie A M Cantarel
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
| | - Aymeric Signoret
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
- Université Claude Bernard Lyon 1, Laboratoire des Ecosystèmes et Hydosystèmes Naturels et Anthropisés LEHNA, ENTPE, UMR 5023 CNRS, 69622 Villeurbanne, France
| | - Jonathan Gervaix
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
| | - Chiquitta Beligon
- Université Claude Bernard Lyon 1, Laboratoire des Ecosystèmes et Hydosystèmes Naturels et Anthropisés LEHNA, ENTPE, UMR 5023 CNRS, 69622 Villeurbanne, France
| | - Cédric Béraud
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
- Université Claude Bernard Lyon 1, Laboratoire des Ecosystèmes et Hydosystèmes Naturels et Anthropisés LEHNA, ENTPE, UMR 5023 CNRS, 69622 Villeurbanne, France
| | - Christelle Boisselet
- Université Claude Bernard Lyon 1, Laboratoire des Ecosystèmes et Hydosystèmes Naturels et Anthropisés LEHNA, ENTPE, UMR 5023 CNRS, 69622 Villeurbanne, France
| | - Charline Creuzé des Châtelliers
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
| | - Pauline Defour
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
| | - Abigaïl Delort
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
| | - Elise Lacroix
- Université Claude Bernard Lyon 1, Plateforme ‘Serre et Chambres Climatiques’, FR BioEEnVis, Domaine scientifique de la DOUA, 69622 Villeurbanne, France
| | - Clément Lobreau
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
- Université Claude Bernard Lyon 1, Laboratoire des Ecosystèmes et Hydosystèmes Naturels et Anthropisés LEHNA, ENTPE, UMR 5023 CNRS, 69622 Villeurbanne, France
| | - Enzo Louvez
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
| | - Coralie Marais
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Marie Simonin
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Florence Piola
- Université Claude Bernard Lyon 1, Laboratoire des Ecosystèmes et Hydosystèmes Naturels et Anthropisés LEHNA, ENTPE, UMR 5023 CNRS, 69622 Villeurbanne, France
| |
Collapse
|
5
|
Ye M, Zheng W, Yin C, Fan X, Chen H, Gao Z, Zhao Y, Liang Y. The inhibitory efficacy of procyanidin on soil denitrification varies with N fertilizer type applied. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150588. [PMID: 34582856 DOI: 10.1016/j.scitotenv.2021.150588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/23/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Denitrification is a major process of the nitrogen (N) cycle by converting nitrate (NO3-) back to gaseous nitrogen (N2), which leads to massive losses of N, including fertilizer N, from agricultural systems. One mitigation strategy for these N losses involves denitrification inhibition by plant-derived biological denitrification inhibitors (BDIs). Procyanidin was recently identified as a new class of BDI in root extracts from Fallopia spp. However, the efficacy of this compound on soil denitrification under different N fertilizer sources is not well understood. Here, a 14-day microcosm experiment was conducted using three nitrate-based fertilizers (NH4NO3, KNO3, and Ca(NO3)2) to investigate the impact of procyanidin on soil denitrification and associated microbial pathways. Results showed that procyanidin inhibited denitrification activity regardless of the source of N fertilizer applied, but the inhibitory efficacy of procyanidin varied with N fertilizer types. Addition of procyanidin had greater denitrification inhibition in the soils applied with NH4NO3 than with other types of N fertilizer. Moreover, nitrate reductase activity was significantly suppressed by procyanidin addition across all three N fertilizers tested. Quantification of denitrifying functional genes (nirS, nirK, and nosZ) demonstrated that procyanidin inhibited the activity and growth of nirS- and nirK-type denitrifiers, but stimulated the growth of nosZI-containing denitrifiers. These findings indicate that the inhibition of soil denitrification by procyanidin was mainly a result of the suppression of nitrate reductase activity and nirS- and nirK-type denitrifiers abundance. The use of procyanidin together with N fertilizers, especially NH4NO3, can be an effective way to reduce the N losses by denitrification.
Collapse
Affiliation(s)
- Mujun Ye
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wanning Zheng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chang Yin
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoping Fan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Chen
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zixiang Gao
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhua Zhao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Laffite A, Florio A, Andrianarisoa KS, Creuze des Chatelliers C, Schloter‐Hai B, Ndaw SM, Periot C, Schloter M, Zeller B, Poly F, Le Roux X. Biological inhibition of soil nitrification by forest tree species affectsNitrobacterpopulations. Environ Microbiol 2020; 22:1141-1153. [DOI: 10.1111/1462-2920.14905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/25/2019] [Accepted: 12/18/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Amandine Laffite
- Laboratoire d'Ecologie Microbienne LEM, INRA UMR 1418, CNRS UMR 5557Université Lyon 1, Université de Lyon F‐69622 Villeurbanne Cedex France
| | - Alessandro Florio
- Laboratoire d'Ecologie Microbienne LEM, INRA UMR 1418, CNRS UMR 5557Université Lyon 1, Université de Lyon F‐69622 Villeurbanne Cedex France
| | | | - Charline Creuze des Chatelliers
- Laboratoire d'Ecologie Microbienne LEM, INRA UMR 1418, CNRS UMR 5557Université Lyon 1, Université de Lyon F‐69622 Villeurbanne Cedex France
| | - Brigitte Schloter‐Hai
- Research Unit for Comparative Microbiome AnalysisHelmholtz Zentrum München D‐85764 Ingolstädter Landstraße 1 Neuherberg Germany
| | - Sidy M. Ndaw
- Laboratoire d'Ecologie Microbienne LEM, INRA UMR 1418, CNRS UMR 5557Université Lyon 1, Université de Lyon F‐69622 Villeurbanne Cedex France
| | - Charlotte Periot
- Laboratoire d'Ecologie Microbienne LEM, INRA UMR 1418, CNRS UMR 5557Université Lyon 1, Université de Lyon F‐69622 Villeurbanne Cedex France
| | - Michael Schloter
- Research Unit for Comparative Microbiome AnalysisHelmholtz Zentrum München D‐85764 Ingolstädter Landstraße 1 Neuherberg Germany
| | - Bernd Zeller
- Biogéochimie des Ecosystèmes ForestiersINRA Grand‐EST Nancy UR 1138 Route d'Amance, 54280 Champenoux France
| | - Franck Poly
- Laboratoire d'Ecologie Microbienne LEM, INRA UMR 1418, CNRS UMR 5557Université Lyon 1, Université de Lyon F‐69622 Villeurbanne Cedex France
| | - Xavier Le Roux
- Laboratoire d'Ecologie Microbienne LEM, INRA UMR 1418, CNRS UMR 5557Université Lyon 1, Université de Lyon F‐69622 Villeurbanne Cedex France
| |
Collapse
|
7
|
Yang L, Huang Y, Lima LV, Sun Z, Liu M, Wang J, Liu N, Ren H. Rethinking the Ecosystem Functions of Dicranopteris, a Widespread Genus of Ferns. FRONTIERS IN PLANT SCIENCE 2020; 11:581513. [PMID: 33519842 PMCID: PMC7845760 DOI: 10.3389/fpls.2020.581513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/14/2020] [Indexed: 05/19/2023]
Abstract
Dicranopteris is an ancient and widespread genus of ferns in pantropical regions. Some species of the genus can form dense thickets, and dominate the understory, which are common and key species in tropical and subtropical ecosystems. However, they were mostly cut or burned in forest management because of forming dense thickets which were considered to interfere with forest regeneration and succession. In the current review, we argue that the Dicranopteris species which are able to rapidly colonize barren areas may contribute to ecosystem recovery, resistance to environmental stress, and succession control. Rapid colonization involves prolific spore production, rapid clonal growth, the generation of high surface cover, and the ability to fill gaps; stress resistance includes resistance to abiotic stress, and the ability to reduce soil erosion from rainfall, alien species invasion, and soil contamination and toxicity; and succession facilitation consists of carbon and nutrient sequestration in soil, moderation of the microclimate, alteration of the soil microbial and faunal communities, and determination of which plant species to be established in the next successional stage. All of these ecosystem functions may be beneficial to ecosystem resilience. We expect that the distribution of Dicranopteris will expand in response to global warming, changes in precipitation patterns, increases in soil pollution, deforestation, and land degradation. We recommend that Dicranopteris, as a pioneer fern and a valuable component of tropical and subtropical ecosystems, needs more attention in future research and better management practices to promote forest regeneration and succession.
Collapse
Affiliation(s)
- Long Yang
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangdong Academy of Sciences, Guangzhou Institute of Geography, Guangzhou, China
| | - Yuhui Huang
- Guangdong Provincial Key Laboratory of Forest Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Lucas Vieira Lima
- Departamento de Botânica, Laboratório de Sistemática Vegetal, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Zhongyu Sun
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangdong Academy of Sciences, Guangzhou Institute of Geography, Guangzhou, China
| | - Meijie Liu
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangdong Academy of Sciences, Guangzhou Institute of Geography, Guangzhou, China
| | - Jun Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Nan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hai Ren
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Hai Ren,
| |
Collapse
|
8
|
Nogueira CB, Menéndez E, Ramírez-Bahena MH, Velázquez E, Peix Á, Mateos PF, Scotti MR. The N-fixing legume Periandra mediterranea constrains the invasion of an exotic grass (Melinis minutiflora P. Beauv) by altering soil N cycling. Sci Rep 2019; 9:11033. [PMID: 31363104 PMCID: PMC6667476 DOI: 10.1038/s41598-019-47380-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/10/2019] [Indexed: 11/08/2022] Open
Abstract
Melinis minutiflora is an invasive species that threatens the biodiversity of the endemic vegetation of the campo rupestre biome in Brazil, displacing the native vegetation and favouring fire spread. As M. minutiflora invasion has been associated with a high nitrogen (N) demand, we assessed changes in N cycle under four treatments: two treatments with contrasting invasion levels (above and below 50%) and two un-invaded control treatments with native vegetation, in the presence or absence of the leguminous species Periandra mediterranea. This latter species was considered to be the main N source in this site due to its ability to fix N2 in association with Bradyrhizobia species. Soil proteolytic activity was high in treatments with P. mediterranea and in those severely invaded, but not in the first steps of invasion. While ammonium was the N-chemical species dominant in plots with native species, including P.mediterranea, soil nitrate prevailed only in fully invaded plots due to the stimulation of the nitrifying bacterial (AOB) and archaeal (AOA) populations carrying the amoA gene. However, in the presence of P. mediterranea, either in the beginning of the invasion or in uninvaded plots, we observed an inhibition of the nitrifying microbial populations and nitrate formation, suggesting that this is a biotic resistance strategy elicited by P. mediterranea to compete with M. minutiflora. Therefore, the inhibition of proteolytic activity and the nitrification process were the strategies elicited by P.mediterranea to constrain M.munitiflora invasion.
Collapse
Affiliation(s)
- Carina B Nogueira
- Department of Botany, Institute of Biological Science/Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Esther Menéndez
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
- ICAAM (Institute of Mediterranean Agriculture and Environmental Sciences), University of Évora-Núcleo da Mitra, Évora, Portugal
| | | | - Encarna Velázquez
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Universidad de Salamanca- CSIC 'Interacción Planta-Microorganismo', Salamanca, Spain
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
- Unidad Asociada Universidad de Salamanca- CSIC 'Interacción Planta-Microorganismo', Salamanca, Spain
| | - Pedro F Mateos
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Universidad de Salamanca- CSIC 'Interacción Planta-Microorganismo', Salamanca, Spain
| | - Maria Rita Scotti
- Department of Botany, Institute of Biological Science/Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|