1
|
Robbins ZJ, Xu C, Aukema BH, Buotte PC, Chitra-Tarak R, Fettig CJ, Goulden ML, Goodsman DW, Hall AD, Koven CD, Kueppers LM, Madakumbura GD, Mortenson LA, Powell JA, Scheller RM. Warming increased bark beetle-induced tree mortality by 30% during an extreme drought in California. GLOBAL CHANGE BIOLOGY 2022; 28:509-523. [PMID: 34713535 DOI: 10.1111/gcb.15927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Quantifying the responses of forest disturbances to climate warming is critical to our understanding of carbon cycles and energy balances of the Earth system. The impact of warming on bark beetle outbreaks is complex as multiple drivers of these events may respond differently to warming. Using a novel model of bark beetle biology and host tree interactions, we assessed how contemporary warming affected western pine beetle (Dendroctonus brevicomis) populations and mortality of its host, ponderosa pine (Pinus ponderosa), during an extreme drought in the Sierra Nevada, California, United States. When compared with the field data, our model captured the western pine beetle flight timing and rates of ponderosa pine mortality observed during the drought. In assessing the influence of temperature on western pine beetles, we found that contemporary warming increased the development rate of the western pine beetle and decreased the overwinter mortality rate of western pine beetle larvae leading to increased population growth during periods of lowered tree defense. We attribute a 29.9% (95% CI: 29.4%-30.2%) increase in ponderosa pine mortality during drought directly to increases in western pine beetle voltinism (i.e., associated with increased development rates of western pine beetle) and, to a much lesser extent, reductions in overwintering mortality. These findings, along with other studies, suggest each degree (°C) increase in temperature may have increased the number of ponderosa pine killed by upwards of 35%-40% °C-1 if the effects of compromised tree defenses (15%-20%) and increased western pine beetle populations (20%) are additive. Due to the warming ability to considerably increase mortality through the mechanism of bark beetle populations, models need to consider climate's influence on both host tree stress and the bark beetle population dynamics when determining future levels of tree mortality.
Collapse
Affiliation(s)
- Zachary J Robbins
- Earth and Environmental Sciences Division (EES-14), Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | - Chonggang Xu
- Earth and Environmental Sciences Division (EES-14), Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Brian H Aukema
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - Polly C Buotte
- Energy and Resources Group, University of California Berkeley, Berkeley, California, USA
| | - Rutuja Chitra-Tarak
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Michael L Goulden
- Department of Earth System Science, University of California, Irvine, California, USA
| | - Devin W Goodsman
- Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia, Canada
| | - Alexander D Hall
- Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA
| | - Charles D Koven
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Lara M Kueppers
- Energy and Resources Group, University of California Berkeley, Berkeley, California, USA
| | - Gavin D Madakumbura
- Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA
| | - Leif A Mortenson
- Pacific Southwest Research Station, USDA Forest Service, Davis, California, USA
| | - James A Powell
- Mathematics and Statistics Department, Utah State University, Logan, Utah, USA
| | - Robert M Scheller
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Abstract
The growth of forests and the feedbacks between forests and environmental changes are central issues in the planetary carbon cycle, global climate change, and basic plant ecology. A challenge to understanding both growth and feedbacks from local to global scales is that many critical metabolic processes vary among species. An innovation in solving this challenge is the recognition that species can be lumped into “functional groups” based on metabolic similarity, and these functional groups can then be studied in computational models that simulate ecosystem function. Despite the vast resources devoted to functional group studies and the progress made by them, an important logical and biological question has not been formally addressed, “How do the groupings alter the results of modeling studies?” To what extent do modeling results depend on the choices made in aggregating taxa into functional groups. Here, we consider the effects of using different aggregation strategies in simulating the carbon dynamics of a deciduous forest. Understanding the impacts that aggregation strategy has on efforts to simulate regional-to-global-scale forest dynamics offers insights into both ecosystem regulation and model function and addresses this central problem in the study of carbon dynamics.
Collapse
|
3
|
Effects of Bark Beetle Outbreaks on Forest Landscape Pattern in the Southern Rocky Mountains, U.S.A. REMOTE SENSING 2021. [DOI: 10.3390/rs13061089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the late 1990s, extensive outbreaks of native bark beetles (Curculionidae: Scolytinae) have affected coniferous forests throughout Europe and North America, driving changes in carbon storage, wildlife habitat, nutrient cycling, and water resource provisioning. Remote sensing is a crucial tool for quantifying the effects of these disturbances across broad landscapes. In particular, Landsat time series (LTS) are increasingly used to characterize outbreak dynamics, including the presence and severity of bark beetle-caused tree mortality, though broad-scale LTS-based maps are rarely informed by detailed field validation. Here we used spatial and temporal information from LTS products, in combination with extensive field data and Random Forest (RF) models, to develop 30-m maps of the presence (i.e., any occurrence) and severity (i.e., cumulative percent basal area mortality) of beetle-caused tree mortality 1997–2019 in subalpine forests throughout the Southern Rocky Mountains, USA. Using resultant maps, we also quantified spatial patterns of cumulative tree mortality throughout the region, an important yet poorly understood concept in beetle-affected forests. RF models using LTS products to predict presence and severity performed well, with 80.3% correctly classified (Kappa = 0.61) and R2 = 0.68 (RMSE = 17.3), respectively. We found that ≥10,256 km2 of subalpine forest area (39.5% of the study area) was affected by bark beetles and 19.3% of the study area experienced ≥70% tree mortality over the twenty-three year period. Variograms indicated that severity was autocorrelated at scales < 250 km. Interestingly, cumulative patch-size distributions showed that areas with a near-total loss of the overstory canopy (i.e., ≥90% mortality) were relatively small (<0.24 km2) and isolated throughout the study area. Our findings help to inform an understanding of the variable effects of bark beetle outbreaks across complex forested regions and provide insight into patterns of disturbance legacies, landscape connectivity, and susceptibility to future disturbance.
Collapse
|
4
|
Andrus RA, Hart SJ, Veblen TT. Forest recovery following synchronous outbreaks of spruce and western balsam bark beetle is slowed by ungulate browsing. Ecology 2020; 101:e02998. [PMID: 32012254 DOI: 10.1002/ecy.2998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 11/08/2022]
Abstract
Understanding how severe disturbances and their interactions affect forests is key to projecting ecological change under a warming climate. Substantial increases in some biotic disturbances, such as bark beetle outbreaks, in temperate forest ecosystemsmay compromise recovery to a forest vegetation type (i.e., physiognomic recovery or resilience), especially if subsequent biotic disturbances (e.g., herbivory) alter recovery mechanisms. From 2005 to 2017, severe outbreaks (>90% mortality) of spruce bark beetles (SB, Dendroctonus rufipennis) affected Engelmann spruce (Picea engelmannii) across 325,000 ha of spruce and subalpine fir (Abies lasiocarpa) forest in the southern Rocky Mountains, USA. Concurrently, an outbreak of western balsam bark beetle (WBBB, Dryocoetes confuses) infested subalpine fir across at least 47,000 of these hectares. We explored the capacity of 105 stands affected by one or two bark beetle outbreaks and browsing of juvenile trees by ungulates to return to a forest vegetation type in the context of pre-outbreak forest conditions and topography. Nine initial forest trajectories (i.e., at least several decades) were identified from four pre-outbreak forest types affected by three biotic disturbances that occurred at different spatial scales and severities. Most stands (86%) contained surviving nonhost adult trees in the main canopy (fir and aspen [Populus tremuloides]) and many surviving juveniles of all species, implying that they are currently on a trajectory for physiognomic recovery. Stands composed exclusively of large-diameter spruce were affected by a severe SB outbreak and were most vulnerable to a transition to a low-density forest, below regional stocking levels (<370 trees/ha). Greater pre-outbreak stand structural complexity and species diversity were key traits of stands with a higher potential for physiognomic recovery. However, all multispecies stands shifted in relative composition of the main canopy to nonhost species, suggesting low potential for compositional recovery over the next several decades. Most post-outbreak stands (86%) exceeded regional stocking levels with trees taller than the browse zone (<2 m). As such, ungulate browsing on over half of all juveniles will primarily affect the rate of infilling of the forest canopy and preferential browsing of more palatable species will influence the composition of the future forest canopy.
Collapse
Affiliation(s)
- Robert A Andrus
- Department of Geography, University of Colorado, Boulder, Colorado, 80309, USA
| | - Sarah J Hart
- Department Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Thomas T Veblen
- Department of Geography, University of Colorado, Boulder, Colorado, 80309, USA
| |
Collapse
|
5
|
Foster AC, Armstrong AH, Shuman JK, Shugart HH, Rogers BM, Mack MC, Goetz SJ, Ranson KJ. Importance of tree- and species-level interactions with wildfire, climate, and soils in interior Alaska: Implications for forest change under a warming climate. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.108765] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Dell IH, Davis TS. Effects of Site Thermal Variation and Physiography on Flight Synchrony and Phenology of the North American Spruce Beetle (Coleoptera: Curculionidae, Scolytinae) and Associated Species in Colorado. ENVIRONMENTAL ENTOMOLOGY 2019; 48:998-1011. [PMID: 31145459 DOI: 10.1093/ee/nvz067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Spruce beetle, Dendroctonus rufipennis Kirby, is associated with forest mortality in Colorado and across western North America, yet it is not well understood how thermal variability affects basic population processes such as flight phenology. However, phenology-temperature relationships are important for understanding patterns of ecosystem disturbance, especially under projected climate warming. Here, we use a multiyear trapping study to test the hypothesis that spruce beetle flight synchrony, timing, and fitness traits (body size) are affected by variation in regional temperature and physiography. Large quantities of co-colonizing scolytines (Polygraphus convexifrons) (Coleoptera: Curculionidae, Scolytinae) and predatory beetles (Thanasimus undulatus) (Coleoptera: Cleridae) that may affect D. rufipennis populations also responded to spruce beetle synthetic pheromone lures. Relationships between flight patterns and environmental conditions were also analyzed for these species. The winter of 2018 was warmer and drier than winter 2017 and was associated with earlier flight for both scolytine species across most sites. The most important environmental factor driving D. rufipennis flight phenology was accumulated growing degree-days, with delayed flight cessation under warmer conditions and larger beetles following a warm winter. Flight was consistently more synchronous under colder growing season conditions for all species, but synchrony was not associated with winter temperatures. Warmer-than-average years promoted earlier flight of D. rufipennis and associated species, and less synchronous, prolonged flight across the region. Consequently, climate warming may be associated with earlier and potentially extended biotic pressure for spruce trees in the Rocky Mountain region, and flight phenology of multiple scolytines is plastic in response to thermal conditions.
Collapse
Affiliation(s)
- Isaac Hans Dell
- Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO
| | - Thomas Seth Davis
- Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO
| |
Collapse
|