1
|
Tariq A, Graciano C, Sardans J, Zeng F, Hughes AC, Ahmed Z, Ullah A, Ali S, Gao Y, Peñuelas J. Plant root mechanisms and their effects on carbon and nutrient accumulation in desert ecosystems under changes in land use and climate. THE NEW PHYTOLOGIST 2024; 242:916-934. [PMID: 38482544 DOI: 10.1111/nph.19676] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/27/2024] [Indexed: 04/12/2024]
Abstract
Deserts represent key carbon reservoirs, yet as these systems are threatened this has implications for biodiversity and climate change. This review focuses on how these changes affect desert ecosystems, particularly plant root systems and their impact on carbon and mineral nutrient stocks. Desert plants have diverse root architectures shaped by water acquisition strategies, affecting plant biomass and overall carbon and nutrient stocks. Climate change can disrupt desert plant communities, with droughts impacting both shallow and deep-rooted plants as groundwater levels fluctuate. Vegetation management practices, like grazing, significantly influence plant communities, soil composition, root microorganisms, biomass, and nutrient stocks. Shallow-rooted plants are particularly susceptible to climate change and human interference. To safeguard desert ecosystems, understanding root architecture and deep soil layers is crucial. Implementing strategic management practices such as reducing grazing pressure, maintaining moderate harvesting levels, and adopting moderate fertilization can help preserve plant-soil systems. Employing socio-ecological approaches for community restoration enhances carbon and nutrient retention, limits desert expansion, and reduces CO2 emissions. This review underscores the importance of investigating belowground plant processes and their role in shaping desert landscapes, emphasizing the urgent need for a comprehensive understanding of desert ecosystems.
Collapse
Affiliation(s)
- Akash Tariq
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Corina Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, 1900, Buenos Aires, Argentina
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong, 852, China
| | - Zeeshan Ahmed
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sikandar Ali
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanju Gao
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| |
Collapse
|
2
|
Eskov AK, Elumeeva TG, Leonov VD, Tsurikov SM, Viktorova VA, Prilepsky NG, Abakumov EV. The Carbon Isotope Composition of Epiphytes Depends Not Only on Their Layers, Life Forms, and Taxonomical Groups but Also on the Carbon and Nitrogen Indicators of Host Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:3500. [PMID: 37836240 PMCID: PMC10575002 DOI: 10.3390/plants12193500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
The carbon isotopic composition of plant tissues is a diagnostic feature of a number of physiological and ecological processes. The most important of which is the type of photosynthesis. In epiphytes, two peaks of δ13C values are known to correspond to C3 and CAM photosynthesis and some variants of transitional forms between them. But the diagnosis of δ13C may not be limited to the type of photosynthesis. This makes it necessary to study trends in the distribution of δ13C in a broader ecological context. In this study, we present trends in the distribution of δ13C epiphytes and other structurally dependent plants and their relationship with other isotopic and elemental parameters (δ15N, C%, N%, and C/N) and with life forms of epiphytes, taxonomic or vertical groups in crowns (synusia), and the parameters of the trees themselves. In all communities except for the moss forest, δ13C in epiphyte leaves was significantly higher (less negative) than in phorophyte leaves. In general, δ13C in epiphytes in mountain communities (pine forest and moss forest) was more negative than in other communities due to the absence of succulents with CAM. δ13C in the leaves of all epiphytes was negatively related to the percentage of carbon and δ15N in the leaves of the phorophyte. When considering the Gaussian distributions of δ13C with the method of modeling mixtures, we observe the unimodal, bimodal, and trimodal nature of the distribution.
Collapse
Affiliation(s)
- Alen K. Eskov
- Department of Plant Ecology and Geography, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Tatiana G. Elumeeva
- Department of Plant Ecology and Geography, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Vlad. D. Leonov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij Prosp., 119071 Moscow, Russia
| | - Sergey M. Tsurikov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij Prosp., 119071 Moscow, Russia
| | | | - Nikolay G. Prilepsky
- Department of Plant Ecology and Geography, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Evgeny V. Abakumov
- Department of Applied Ecology, Saint-Petersburg State University, 16 Line of VO 29, 199178 St. Petersburg, Russia;
| |
Collapse
|
3
|
English NB, Dettman DL, Hua Q, Mendoza JM, Muir D, Hultine KR, Williams DG. Age-growth relationships, temperature sensitivity and palaeoclimate-archive potential of the threatened Altiplano cactus Echinopsis atacamensis. CONSERVATION PHYSIOLOGY 2021; 9:coaa123. [PMID: 33469468 PMCID: PMC7805519 DOI: 10.1093/conphys/coaa123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 11/08/2020] [Accepted: 12/03/2020] [Indexed: 06/02/2023]
Abstract
The tall (>4 m), charismatic and threatened columnar cacti, pasacana [Echinopsis atacamensis (Vaupel) Friedrich & G.D. Rowley)], grows on the Bolivian Altiplano and provides environmental and economic value to these extremely cold, arid and high-elevation (~4000 m) ecosystems. Yet very little is known about their growth rates, ages, demography and climate sensitivity. Using radiocarbon in spine dating time series, we quantitatively estimate the growth rate (5.8 and 8.3 cm yr-1) and age of these cacti (up to 430 years). These data and our field measurements yield a survivorship curve that suggests precipitation on the Altiplano is important for this species' recruitment. Our results also reveal a relationship between nighttime temperatures on the Altiplano and the variation in oxygen isotope values in spines (δ18O). The annual δ18O minimums from 58 years of in-series spine tissue from pasacana on the Altiplano provides at least decadal proxy records of temperature (r = 0.58; P < 0.0001), and evidence suggests that there are longer records connecting modern Altiplano temperatures to sea-surface temperatures (SSTs) in the Atlantic Ocean. While the role of Atlantic SSTs on the South American Summer Monsoon (SASM) and precipitation on the Bolivian Altiplano is well described, the impact of SSTs on Altiplano temperatures is disputed. Understanding the modern impact of SSTs on temperature on the Altiplano is important to both understand the impact of future climate change on pasacana cactus and to understand past climate changes on the Altiplano. This is the best quantitative evidence to date of one of the oldest known cactus in the world, although there are likely many older cacti on the Altiplano, or elsewhere, that have not been sampled yet. Together with growth, isotope and age data, this information should lead to better management and conservation outcomes for this threatened species and the Altiplano ecosystem.
Collapse
Affiliation(s)
- N B English
- School of Health, Medical and Applied Science, Central Queensland University, 538 Flinders St West, Townsville, QLD 4810, Australia
| | - D L Dettman
- Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
- Estuary Research Center, Shimane University, Matsue, 690-8504, Japan
| | - Q Hua
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - J M Mendoza
- Herbario del Oriente Boliviano (USZ), Museo de Historia Natural Noel Kempff Mercado, Av. Irala 565, Casilla 2489, Santa Cruz, Bolivia
| | - D Muir
- Murdoch University, Perth, WA 6009, Australia
| | - K R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - D G Williams
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
4
|
Hultine KR, Dettman DL, English NB, Williams DG. Giant cacti: isotopic recorders of climate variation in warm deserts of the Americas. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6509-6519. [PMID: 31269200 DOI: 10.1093/jxb/erz320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
The plant family Cactaceae is considered among the most threatened groups of organisms on the planet. The threatened status of the cacti family has created a renewed interest in the highly evolved physiological and morphological traits that underpin their persistence in some of the harshest subtropical environments in the Americas. Among the most important anatomical features of cacti is the modification of leaves into spines, and previous work has shown that the stable isotope chemistry of cacti spines records potential variations in stem water balance, stress, and Crassulacean acid metabolism (CAM). We review the opportunities, challenges, and pitfalls in measuring δ 13C, δ 2H, and δ 18O ratios captured in spine tissues that potentially reflect temporal and spatial patterns of stomatal conductance, internal to atmospheric CO2 partial pressures, and subsequent patterns of photosynthetic gas exchange. We then evaluate the challenges in stable isotope analysis in spine tissues related to variation in CAM expression, stem water compartmentalization, and spine whole-tissue composition among other factors. Finally, we describe how the analysis of all three isotopes can be used in combination to provide potentially robust analysis of photosynthetic function in cacti, and other succulent-stemmed taxa across broad spatio-temporal environmental gradients.
Collapse
Affiliation(s)
- Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, USA
| | - David L Dettman
- Department of Geosciences, University of Arizona, Tucson, AZ, USA
- Estuary Research Center, Shimane University, Matsue, Shimane, Japan
| | - Nathan B English
- School of Health, Medical and Applied Sciences, Central Queensland University, Townsville, QLD, Australia
| | | |
Collapse
|
5
|
Félix-Burruel RE, Larios E, Bustamante E, Búrquez A. Nonlinear modeling of saguaro growth rates reveals the importance of temperature for size-dependent growth. AMERICAN JOURNAL OF BOTANY 2019; 106:1300-1307. [PMID: 31529806 DOI: 10.1002/ajb2.1358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
PREMISE The saguaro cactus is an iconic species of the Sonoran Desert. Its individual growth rates have been investigated for over 100 years. Its growth dynamics have been studied using phenomenological models intended to estimate growth, but not to understand the underlying biological processes. Most studies have suggested summer rainfall as the sole factor determining saguaro growth, overlooking the influence of other factors related to the process of growth. METHODS We analyzed the annual growth rates for 13 saguaro populations in the Sonoran Desert using nonlinear models. These are better suited to analyze growth since they consider the fact that maximum growth rates diminish just before the onset of reproduction. We related model parameters to the local climate. RESULTS The most parsimonious model was the Ricker function that described growth considering cactus decline with age. Variance in temperature, rather than precipitation, was more closely related to growth. Higher variance in temperature at the beginning of the warm season was detrimental to saguaro growth. CONCLUSIONS Simple nonlinear equations modeled growth rate using biologically interpretable parameters related to climate factors. Because the temperature is projected to increase in both mean and variance by climate change, the population dynamics of this iconic cactus are likely to be affected.
Collapse
Affiliation(s)
- Ricardo E Félix-Burruel
- Posgrado en Ciencias de la Tierra, Instituto de Geología, Universidad Nacional Autónoma de México, México
- Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, México
| | - Eugenio Larios
- Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, México
| | - Enriquena Bustamante
- Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, México
| | - Alberto Búrquez
- Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, México
| |
Collapse
|