1
|
Tourville JC, Murray GLD, Nelson SJ. Distinct latitudinal patterns of shifting spring phenology across the Appalachian Trail Corridor. Ecology 2024; 105:e4403. [PMID: 39205387 DOI: 10.1002/ecy.4403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024]
Abstract
Warming associated with climate change will advance the onset of spring phenology for many forest plants across the Eastern United States. Understory forbs and spring ephemerals that fix a disproportionate amount of carbon during early spring may be negatively affected by earlier canopy closure; however, information on the spatial patterns of phenological change for these communities is still lacking. To assess the potential for changes in spring phenological windows, we synthesized observations from the Appalachian Mountain Club's (AMCs) Mountain Watch (MW) project, the National Phenology Network (NPN), and AMC's iNaturalist projects between 2004 and 2022 (n = 118,250) across the length of the Appalachian Trail (AT) Corridor (34° N-46° N latitude). We used hierarchical Bayesian modeling to examine the sensitivity of spring flowering and leaf-out for 11 understory species and 14 canopy tree species to mean spring temperature (April-June). We conducted analyses across the AT Corridor, partitioned by regions of 4° latitude (south, mid-Atlantic, and north). Spring phenologies for both understory plants and canopy trees advanced with warming (~6 and ~3 days/°C, respectively). However, the sensitivity of each group varied by latitude, with the phenology of trees and understory plants advancing to a greater degree in the mid-Atlantic region (~10 days/°C) than in the southern or northern regions (~5 days/°C). While we find evidence that phenological windows remain stable in the southern and mid-Atlantic portions of the AT, we observed an expansion of the spring phenological window in the north where there was greater understory forb temperature sensitivity compared with trees (~2.7 days/°C). Our analyses indicate the differential sensitivity of forest plant phenology to potential warming across a large latitudinal gradient in the Eastern United States. Further, evidence for a temperature-driven expansion of the spring phenological window suggests a potential beneficial effect for understory plants in the northern AT, although phenological mismatch with potential pollinators and increased vulnerability to late winter frosts are possible. Using extensive citizen-science datasets allows us to synthesize regional- and continental-scale data to explore spatial and temporal trends in spring phenology related to warming. Such data can help to standardize approaches in phenological research and its application to forest climate resiliency.
Collapse
|
2
|
Yancy AJ, Lee BR, Kuebbing SE, Neufeld HS, Spicer ME, Heberling JM. Evaluating the definition and distribution of spring ephemeral wildflowers in eastern North America. AMERICAN JOURNAL OF BOTANY 2024; 111:e16323. [PMID: 38659163 DOI: 10.1002/ajb2.16323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 04/26/2024]
Abstract
PREMISE The herbaceous layer accounts for the majority of plant biodiversity in eastern North American forests, encompassing substantial variation in life history strategy and function. One group of early-season herbaceous understory species, colloquially referred to as spring ephemeral wildflowers, are ecologically and culturally important, but little is known about the prevalence and biogeographic patterns of the spring ephemeral strategy. METHODS We used observations collected by the Global Biodiversity Information Facility (GBIF) to quantify the ephemerality of 559 understory forb species across eastern North America and classify them according to a continuous ephemerality index (ranging from 0 = never ephemeral to 1 = always ephemeral). We then used this information to model where ephemeral forbs were most common across the landscape with the goal of identifying geographic and environmental drivers important to their distributions and ranges. RESULTS Only 3.4% of all understory wildflower species were spring ephemerals in all parts of their range, and 18.4% (103 species) were ephemeral in at least part of their range. Spring ephemerals peaked in absolute species richness and relative proportion at mid latitudes. CONCLUSIONS Spring ephemeral phenology is an important shade-avoidance strategy for a large segment of the total understory species in temperate deciduous forests. In North America, the strategy is relatively most important for forest understories at mid latitudes. The definitions of spring ephemerality we provide here serve as an important ecological context for conservation priorities and to evaluate responses of this biodiverse group to future environmental change.
Collapse
Affiliation(s)
- Abby J Yancy
- Carnegie Museum of Natural History, Section of Botany, 4400 Forbes Ave., Pittsburgh, 15213 USA, PA
- Department of Geology and Environmental Sciences, University of Pittsburgh, 4107 O'Hara Street, Pittsburgh, 15260, PA, USA
| | - Benjamin R Lee
- Carnegie Museum of Natural History, Section of Botany, 4400 Forbes Ave., Pittsburgh, 15213 USA, PA
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Ave, Pittsburgh, 15260, PA, USA
- Holden Arboretum, 9550 Sperry Road, Kirtland, 44094, OH, USA
| | - Sara E Kuebbing
- Carnegie Museum of Natural History, Section of Botany, 4400 Forbes Ave., Pittsburgh, 15213 USA, PA
- The Forest School, Yale School of the Environment, Yale University, New Haven, 06511, CT, USA
| | - Howard S Neufeld
- Appalachian State University Dept. of Biology, 572 Rivers Street, Boone, 28608, NC, USA
| | - Michelle Elise Spicer
- Lehigh University Dept. of Earth and Environmental Science, 1 West Packer Avenue, Bethlehem, 18015, PA, USA
| | - J Mason Heberling
- Carnegie Museum of Natural History, Section of Botany, 4400 Forbes Ave., Pittsburgh, 15213 USA, PA
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Ave, Pittsburgh, 15260, PA, USA
| |
Collapse
|
3
|
Primack RB, Gallinat AS, Ellwood ER, Crimmins TM, Schwartz MD, Staudinger MD, Miller-Rushing AJ. Ten best practices for effective phenological research. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:1509-1522. [PMID: 37507579 PMCID: PMC10457241 DOI: 10.1007/s00484-023-02502-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023]
Abstract
The number and diversity of phenological studies has increased rapidly in recent years. Innovative experiments, field studies, citizen science projects, and analyses of newly available historical data are contributing insights that advance our understanding of ecological and evolutionary responses to the environment, particularly climate change. However, many phenological data sets have peculiarities that are not immediately obvious and can lead to mistakes in analyses and interpretation of results. This paper aims to help researchers, especially those new to the field of phenology, understand challenges and practices that are crucial for effective studies. For example, researchers may fail to account for sampling biases in phenological data, struggle to choose or design a volunteer data collection strategy that adequately fits their project's needs, or combine data sets in inappropriate ways. We describe ten best practices for designing studies of plant and animal phenology, evaluating data quality, and analyzing data. Practices include accounting for common biases in data, using effective citizen or community science methods, and employing appropriate data when investigating phenological mismatches. We present these best practices to help researchers entering the field take full advantage of the wealth of available data and approaches to advance our understanding of phenology and its implications for ecology.
Collapse
Affiliation(s)
| | - Amanda S Gallinat
- Department of Geography, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
- Department of Environmental Studies, Colby College, Waterville, ME, USA
| | - Elizabeth R Ellwood
- iDigBio, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Natural Museum of Los Angeles County, Los Angeles, CA, USA
| | - Theresa M Crimmins
- USA National Phenology Network, School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Mark D Schwartz
- Department of Geography, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michelle D Staudinger
- Department of the Interior, Northeast Climate Adaptation Science Center, US Geological Survey, Amherst, MA, USA
| | | |
Collapse
|
4
|
Butler G, Ross K, Beaman J, Hoepner C, Baring R, Burke da Silva K. Utilising tourist-generated citizen science data in response to environmental challenges: A systematic literature review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117889. [PMID: 37058928 DOI: 10.1016/j.jenvman.2023.117889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
There has been a proliferation of studies that have examined the impacts of public participation in Citizen Science (CS) that respond to environmental challenges and the recovery of ecosystems, endangered species or other important natural assets. However, comparatively few studies have explored how tourists may play a critical role in the generation of CS data and thus it has been posited that many potential opportunities remain unrealised. By systematically analysing studies that have utilised tourist-generated data in response to environmental challenges or issues, this paper seeks to establish an appraisal of what has so far been established in extant literature and to identify future possibilities for the inclusion of tourists in CS. Via our literature search, a total of 45 peer-reviewed studies were identified via the PRISMA search protocol. Our findings reveal numerous positive outcomes were reported that highlight the significant, yet largely untapped, potential of tourist integration in CS, with studies also offering a range of recommendations on how tourists could be included more effectively to expand scientific knowledge. Notwithstanding, several limitations were observed, and it is critical that future CS projects that utilise tourists for data collection purposes are acutely aware of the challenges they may encounter.
Collapse
Affiliation(s)
- Gareth Butler
- College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, SA5042, Australia; Faculty of Management, University of Johannesburg, Bunting Road, Cottesloe, Gauteng, 2092, South Africa.
| | - Kirstin Ross
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, SA5042, Australia.
| | - Julian Beaman
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, SA5042, Australia.
| | - Cassie Hoepner
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, SA5042, Australia.
| | - Ryan Baring
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, SA5042, Australia.
| | - Karen Burke da Silva
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, SA5042, Australia.
| |
Collapse
|
5
|
Liu Y, McDonough MacKenzie C, Primack RB, Hill MJ, Zhang X, Wang Z, Schaaf CB. Using remote sensing to monitor the spring phenology of Acadia National Park across elevational gradients. Ecosphere 2021. [DOI: 10.1002/ecs2.3888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yan Liu
- School for the Environment University of Massachusetts Boston Boston Massachusetts 02125 USA
- Aerospace Information Research Institute Chinese Academy of Sciences Beijing 100094 China
| | - Caitlin McDonough MacKenzie
- Climate Change Institute University of Maine Orono Maine 04469 USA
- Department of Biology Boston University Boston Massachusetts 02215 USA
| | | | - Michael J. Hill
- College of Science and Engineering Flinders University Adelaide South Australia 5042 Australia
- Department of Earth System Science and Policy University of North Dakota Grand Forks North Dakota 58202 USA
| | - Xiaoyang Zhang
- Department of Geography and Geospatial Sciences Geospatial Sciences Center of Excellence South Dakota State University Brookings South Dakota 57007 USA
| | - Zhuosen Wang
- Earth System Science Interdisciplinary Center University of Maryland College Park Maryland 20742 USA
- Terrestrial Information Systems Laboratory NASA Goddard Space Flight Center Greenbelt Maryland 20771 USA
| | - Crystal B. Schaaf
- School for the Environment University of Massachusetts Boston Boston Massachusetts 02125 USA
| |
Collapse
|
6
|
Vellend M, Béhé M, Carteron A, Crofts AL, Danneyrolles V, Gamhewa HT, Ni M, Rinas CL, Watts DA. Plant Responses to Climate Change and an Elevational Gradient in Mont Mégantic National Park, Québec, Canada. Northeast Nat (Steuben) 2021. [DOI: 10.1656/045.028.s1102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Mark Vellend
- Département de Biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Mélanie Béhé
- Département de Biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Alexis Carteron
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Centre sur la Biodiversité, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Anna L. Crofts
- Département de Biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Victor Danneyrolles
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Hasanki T. Gamhewa
- Département de Biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Ming Ni
- Département de Biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Christina L. Rinas
- Département de Biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - David A. Watts
- Département de Biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
7
|
McDonough MacKenzie C, Gallinat AS, Zipf L. Low-cost observations and experiments return a high value in plant phenology research. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11338. [PMID: 32351799 PMCID: PMC7186900 DOI: 10.1002/aps3.11338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/03/2019] [Indexed: 05/18/2023]
Abstract
Plant ecologists in the Anthropocene are tasked with documenting, interpreting, and predicting how plants respond to environmental change. Phenology, the timing of seasonal biological events including leaf-out, flowering, fruiting, and leaf senescence, is among the most visible and oft-recorded facets of plant ecology. Climate-driven shifts in plant phenology can alter reproductive success, interspecific competition, and trophic interactions. Low-cost phenology research, including observational records and experimental manipulations, is fundamental to our understanding of both the mechanisms and effects of phenological change in plant populations, species, and communities. Traditions of local-scale botanical phenology observations and data leveraged from written records and natural history collections provide the historical context for recent observations of changing phenologies. New technology facilitates expanding the spatial, taxonomic, and human interest in this research by combining contemporary field observations by researchers and open access community science (e.g., USA National Phenology Network) and available climate data. Established experimental techniques, such as twig cutting and common garden experiments, are low-cost methods for studying the mechanisms and drivers of plant phenology, enabling researchers to observe phenological responses under novel environmental conditions. We discuss the strengths, limitations, potential hidden costs (i.e., volunteer and student labor), and promise of each of these methods for addressing emerging questions in plant phenology research. Applied thoughtfully, economically, and creatively, many low-cost approaches offer novel opportunities to fill gaps in our geographic, taxonomic, and mechanistic understanding of plant phenology worldwide.
Collapse
Affiliation(s)
| | - Amanda S. Gallinat
- Department of BiologyUtah State UniversityLoganUtah84322USA
- Ecology CenterUtah State UniversityLoganUtah84322USA
| | - Lucy Zipf
- Biology DepartmentBoston University5 Cummington MallBostonMassachusetts02215USA
| |
Collapse
|
8
|
MacKenzie CM, Johnston J, Miller-Rushing AJ, Sheehan W, Pinette R, Primack R. Advancing Leaf-Out and Flowering Phenology is Not Matched by Migratory Bird Arrivals Recorded in Hunting Guide's Journal in Aroostook County, Maine. Northeast Nat (Steuben) 2019. [DOI: 10.1656/045.026.0309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Jason Johnston
- Department of Biology, University of Maine at Presque Isle, 181 Main Street, Presque Isle, ME 04769
| | | | | | - Robert Pinette
- Professor Emeritus, University of Maine at Presque Isle, 18 Melden Drive, Brunswick, ME 04011
| | - Richard Primack
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215
| |
Collapse
|