1
|
Schnalke M, Funk J, Wagner A. Bridging technology and ecology: enhancing applicability of deep learning and UAV-based flower recognition. FRONTIERS IN PLANT SCIENCE 2025; 16:1498913. [PMID: 40171479 PMCID: PMC11959073 DOI: 10.3389/fpls.2025.1498913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/14/2025] [Indexed: 04/03/2025]
Abstract
The decline of insect biomass, including pollinators, represents a significant ecological challenge, impacting both biodiversity and ecosystems. Effective monitoring of pollinator habitats, especially floral resources, is essential for addressing this issue. This study connects drone and deep learning technologies to their practical application in ecological research. It focuses on simplifying the application of these technologies. Updating an object detection toolbox to TensorFlow (TF) 2 enhanced performance and ensured compatibility with newer software packages, facilitating access to multiple object recognition models - Faster Region-based Convolutional Neural Network (Faster R-CNN), Single-Shot-Detector (SSD), and EfficientDet. The three object detection models were tested on two datasets of UAV images of flower-rich grasslands, to evaluate their application potential in practice. A practical guide for biologists to apply flower recognition to Unmanned Aerial Vehicle (UAV) imagery is also provided. The results showed that Faster RCNN had the best overall performance with a precision of 89.9% and a recall of 89%, followed by EfficientDet, which excelled in recall but at a lower precision. Notably, EfficientDet demonstrated the lowest model complexity, making it a suitable choice for applications requiring a balance between efficiency and detection performance. Challenges remain, such as detecting flowers in dense vegetation and accounting for environmental variability.
Collapse
Affiliation(s)
- Marie Schnalke
- Faculty of Management Science and Engineering, Karlsruhe University of Applied Sciences (HKA), Karlsruhe, Germany
| | - Jonas Funk
- Faculty of Management Science and Engineering, Karlsruhe University of Applied Sciences (HKA), Karlsruhe, Germany
| | - Andreas Wagner
- Faculty of Management Science and Engineering, Karlsruhe University of Applied Sciences (HKA), Karlsruhe, Germany
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| |
Collapse
|
2
|
Orikpete OF, Kikanme KN, Falade TDO, Dennis NM, Ejike Ewim DR, Fadare OO. Neonicotinoid pesticides in African agriculture: What do we know and what should be the focus for future research? CHEMOSPHERE 2025; 372:144057. [PMID: 39746486 DOI: 10.1016/j.chemosphere.2024.144057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
This review provides a comprehensive overview of the direct and indirect effects of neonicotinoid pesticides (NEO-P) within African agricultural ecosystems and identifies research gaps, particularly in the monitoring and regulation of pesticide use. We observed a decline in the numbers of NEO-P studies conducted in Africa since 2019 with 40.7% of the countries reporting at least one study to date. Imidacloprid (33.5%), acetamiprid (23.3%), and thiamethoxam (25.0%) are the most reported NEO-P across the continent with concentrations range from 9.0 × 10-5 to 7.2 × 107 mg kg-1, 1.7 × 10-5 to 2.1 × 103 mg kg-1, and 1.0 × 10-5 to 4.7 × 104 mg kg-1, respectively. NEO-P have been reported in honey, water, vegetables, fruits, and staple foods in most countries and in 92-100% of human urine samples collected in Ghana and Cameroon. This widespread presence indicates a potential food safety and public health concern, warranting further study. Studies on NEO-P interactions with bees have emanated mainly from North Africa (35.3% published studies) while Central/Middle, and Southern Africa accounted for 11.8% each of these studies, all of which were conducted in Cameroon and South Africa, respectively. It is important to have contextual evidence to understand neonicotinoids-pollinator interactions across specific African regions and countries; however, literature regarding the extent of NEO-P toxicities/effects on pollinators is required in 44 African countries. The environmental persistence of NEO-P and their broad-spectrum impact necessitate a re-evaluation of current regulatory practices and adoption of more sustainable pest management strategies across the continent. Furthermore, future studies should focus on investigating the long-term exposure to NEO-P, advanced computational methods in ecological risk assessments and eco-friendly alternatives to NEO-P.
Collapse
Affiliation(s)
- Ochuko Felix Orikpete
- Centre for Occupational Health, Safety and Environment (COHSE), University of Port Harcourt, Choba, Rivers State, 500102, Nigeria
| | - Kenneth N Kikanme
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79416, USA
| | - Titilayo D O Falade
- International Institute of Tropical Agriculture, Ibadan, Oyo State, 200001, Nigeria
| | - Nicole M Dennis
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32610, USA
| | | | - Oluniyi O Fadare
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
3
|
Labonté A, Le Corre V, Matejicek A, Felten E, Turpin M, Laurent E, Michel S, Ducourtieux C, Vieren E, Proesmans W, Deytieux V, Cordeau S, Vanbergen AJ. Pollinator functional group abundance and floral heterogeneity in an agroecological context affect mating patterns in a self-incompatible wild plant. AMERICAN JOURNAL OF BOTANY 2024; 111:e16440. [PMID: 39592516 DOI: 10.1002/ajb2.16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 11/28/2024]
Abstract
PREMISE Restoration of seminatural field margins can elevate pollinator activity. However, how they support wild plant gene flow through interactions between pollinators and spatiotemporal gradients in floral resources remains largely unknown. METHODS Using a farm-scale experiment, we tested how mating outcomes (expected heterozygosity and paternity correlation) of the wild, self-incompatible plant Cyanus segetum transplanted into field margins (sown wildflower or grass-legume strips) were affected by the abundance of different pollinator functional groups (defined by species traits). We also investigated how the maternal plant attractiveness, conspecific pollen donor density, and heterospecific floral richness and density interacted with pollinator functional group abundance to modulate C. segetum mating outcomes. RESULTS Multiple paternity increased (=lower paternity correlation) with greater local abundance of hoverflies (syrphids) and female medium-sized wild bees (albeit the latter's effect diminished with decreasing maternal plant attractiveness), and the presence of male bumblebees (Bombus) under low local floral richness. Cyanus segetum progeny genetic diversity increased with male Bombus presence but decreased with greater abundance of syrphids and honey bees (Apis mellifera). CONCLUSIONS Overall, field margins supported plant-pollinator interactions ensuring multiple paternity and conservation of allelic diversity in C. segetum progeny. The contribution to plant mating outcomes of different pollinator functional groups was dictated by their local abundance or traits affecting pollen transfer efficiency. The local floral richness or maternal plant attractiveness sometimes modulated these relationships. This complex response of wild plant mating patterns to community interactions has implications for the use of field margins to restore functional pollination systems in farmed landscapes.
Collapse
Affiliation(s)
- Audrey Labonté
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Valérie Le Corre
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Annick Matejicek
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Emeline Felten
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Mélinda Turpin
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Emilien Laurent
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Séverine Michel
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Chantal Ducourtieux
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Eric Vieren
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Willem Proesmans
- Laboratory of Zoology, Institute for Biosciences, Université de Mons, Place du Parc, 20, Mons, 7000, Belgium
| | - Violaine Deytieux
- U2E, INRAE, Unité Expérimentale du Domaine d'Epoisses, Bretenière, F-21110, France
| | - Stéphane Cordeau
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Adam J Vanbergen
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| |
Collapse
|
4
|
Tusuubira SK, Kelly JK. Experimental evolution suggests rapid assembly of the 'selfing syndrome' from standing variation in Mimulus guttatus. FRONTIERS IN PLANT SCIENCE 2024; 15:1378568. [PMID: 39263417 PMCID: PMC11388319 DOI: 10.3389/fpls.2024.1378568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/23/2024] [Indexed: 09/13/2024]
Abstract
Ecological and evolutionary changes are likely to occur rapidly when outcrossing populations experience pollinator loss. However, the number and identify of plant traits that will respond to this form of selection, as well as the overall predictability of evolutionary responses, remain unclear. We experimentally evolved 20 large replicate populations of Mimulus guttatus for 10 generations under three treatments: pure outcrossing, mixed mating (10% outcrossing) and pure selfing. These populations were founded from the same genetically diverse and outcrossing natural population. After 10 generations, all measured traits evolved with flower size, phenology, and reproductive traits diverging consistently among mating system treatments. Autogamy increased dramatically in the selfing treatment, but the magnitude of adaptation only becomes clear once inbreeding depression is factored out. Selfing treatment plants evolved reduced stigma-anther separation, and also exhibited declines in flower size and per-flower reproductive capacity. Flower size also declined in selfing populations but this was driven mainly by inbreeding depression and cannot be attributed to adaptation towards the selfing syndrome. Generally, the mixed mating populations evolved trait values intermediate to the fully selfing and outcrossing populations. Overall, our experimental treatments reiterated differences that have been documented in interspecific comparisons between selfing and outcrossing species pairs. Given that such contrasts involve species separated by thousands or even millions of generations, it is noteworthy that large evolutionary responses were obtained from genetic variation segregating within a single natural population.
Collapse
Affiliation(s)
- Sharifu K Tusuubira
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| | - John K Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
5
|
Souto-Veiga R, Groeneveld J, Enright NJ, Fontaine JB, Jeltsch F. Climate change may shift metapopulations towards unstable source-sink dynamics in a fire-killed, serotinous shrub. Ecol Evol 2024; 14:e11488. [PMID: 38835526 PMCID: PMC11148395 DOI: 10.1002/ece3.11488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Climate change, with warming and drying weather conditions, is reducing the growth, seed production, and survival of fire-adapted plants in fire-prone regions such as Mediterranean-type ecosystems. These effects of climate change on local plant demographics have recently been shown to reduce the persistence time of local populations of the fire-killed shrub Banksia hookeriana dramatically. In principle, extinctions of local populations may be partly compensated by recolonization events through long-distance dispersal mechanisms of seeds, such as post-fire wind and bird-mediated dispersal, facilitating persistence in spatially structured metapopulations. However, to what degree and under which assumptions metapopulation dynamics might compensate for the drastically increased local extinction risk remains to be explored. Given the long timespans involved and the complexity of interwoven local and regional processes, mechanistic, process-based models are one of the most suitable approaches to systematically explore the potential role of metapopulation dynamics and its underlying ecological assumptions for fire-prone ecosystems. Here we extend a recent mechanistic, process-based, spatially implicit population model for the well-studied fire-killed and serotinous shrub species B. hookeriana to a spatially explicit metapopulation model. We systematically tested the effects of different ecological processes and assumptions on metapopulation dynamics under past (1988-2002) and current (2003-2017) climatic conditions, including (i) effects of different spatio-temporal fires, (ii) effects of (likely) reduced intraspecific plant competition under current conditions and (iii) effects of variation in plant performance among and within patches. In general, metapopulation dynamics had the potential to increase the overall regional persistence of B. hookeriana. However, increased population persistence only occurred under specific optimistic assumptions. In both climate scenarios, the highest persistence occurred with larger fires and intermediate to long inter-fire intervals. The assumption of lower intraspecific plant competition caused by lower densities under current conditions alone was not sufficient to increase persistence significantly. To achieve long-term persistence (defined as >400 years) it was necessary to additionally consider empirically observed variation in plant performance among and within patches, that is, improved habitat quality in some large habitat patches (≥7) that could function as source patches and a higher survival rate and seed production for a subset of plants, specifically the top 25% of flower producers based on current climate conditions monitoring data. Our model results demonstrate that the impacts of ongoing climate change on plant demographics are so severe that even under optimistic assumptions, the existing metapopulation dynamics shift to an unstable source-sink dynamic state. Based on our findings, we recommend increased research efforts to understand the consequences of intraspecific trait variation on plant demographics, emphasizing the variation of individual traits both among and within populations. From a conservation perspective, we encourage fire and land managers to revise their prescribed fire plans, which are typically short interval, small fires, as they conflict with the ecologically appropriate spatio-temporal fire regime for B. hookeriana, and likely as well for many other fire-killed species.
Collapse
Affiliation(s)
- Rodrigo Souto-Veiga
- Department of Plant Ecology and Nature Conservation University of Potsdam Potsdam Germany
- School of Environmental and Conservation Sciences Murdoch University Murdoch Western Australia Australia
- Institute of Plant Science and Microbiology, Ecological Modeling Universität Hamburg Hamburg Germany
| | - Juergen Groeneveld
- Department of Ecological Modelling Helmholtz Centre for Environmental Research - UFZ Leipzig Germany
| | - Neal J Enright
- School of Environmental and Conservation Sciences Murdoch University Murdoch Western Australia Australia
| | - Joseph B Fontaine
- School of Environmental and Conservation Sciences Murdoch University Murdoch Western Australia Australia
| | - Florian Jeltsch
- Department of Plant Ecology and Nature Conservation University of Potsdam Potsdam Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| |
Collapse
|
6
|
Glass JR, Burnett NP, Combes SA, Weisman E, Helbling A, Harrison JF. Flying, nectar-loaded honey bees conserve water and improve heat tolerance by reducing wingbeat frequency and metabolic heat production. Proc Natl Acad Sci U S A 2024; 121:e2311025121. [PMID: 38227669 PMCID: PMC10823226 DOI: 10.1073/pnas.2311025121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024] Open
Abstract
Heat waves are becoming increasingly common due to climate change, making it crucial to identify and understand the capacities for insect pollinators, such as honey bees, to avoid overheating. We examined the effects of hot, dry air temperatures on the physiological and behavioral mechanisms that honey bees use to fly when carrying nectar loads, to assess how foraging is limited by overheating or desiccation. We found that flight muscle temperatures increased linearly with load mass at air temperatures of 20 or 30 °C, but, remarkably, there was no change with increasing nectar loads at an air temperature of 40 °C. Flying, nectar-loaded bees were able to avoid overheating at 40 °C by reducing their flight metabolic rates and increasing evaporative cooling. At high body temperatures, bees apparently increase flight efficiency by lowering their wingbeat frequency and increasing stroke amplitude to compensate, reducing the need for evaporative cooling. However, even with reductions in metabolic heat production, desiccation likely limits foraging at temperatures well below bees' critical thermal maxima in hot, dry conditions.
Collapse
Affiliation(s)
- Jordan R. Glass
- School of Life Sciences, Arizona State University, Tempe, AZ85281
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY82071
| | - Nicholas P. Burnett
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA95616
| | - Stacey A. Combes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA95616
| | - Ethan Weisman
- School of Life Sciences, Arizona State University, Tempe, AZ85281
| | - Alina Helbling
- School of Life Sciences, Arizona State University, Tempe, AZ85281
| | - Jon F. Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ85281
| |
Collapse
|
7
|
Terpstra S, Marquitti FMD, Vasconcelos VV. Adaptive foraging of pollinators fosters gradual tipping under resource competition and rapid environmental change. PLoS Comput Biol 2024; 20:e1011762. [PMID: 38194414 PMCID: PMC10802948 DOI: 10.1371/journal.pcbi.1011762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/22/2024] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Plant and pollinator communities are vital for transnational food chains. Like many natural systems, they are affected by global change: rapidly deteriorating conditions threaten their numbers. Previous theoretical studies identified the potential for community-wide collapse above critical levels of environmental stressors-so-called bifurcation-induced tipping points. Fortunately, even as conditions deteriorate, individuals have some adaptive capacity, potentially increasing the boundary for a safe operating space where changes in ecological processes are reversible. Our study considers this adaptive capacity of pollinators to resource availability and identifies a new threat to disturbed pollinator communities. We model the adaptive foraging of pollinators in changing environments. Pollinator's adaptive foraging alters the dynamical responses of species, to the advantage of some-typically generalists-and the disadvantage of others, with systematic non-linear and non-monotonic effects on the abundance of particular species. We show that, in addition to the extent of environmental stress, the pace of change of environmental stress can also lead to the early collapse of both adaptive and nonadaptive pollinator communities. Specifically, perturbed communities exhibit rate-induced tipping points at stress levels within the safe boundary defined for constant stressors. With adaptive foraging, tipping is a more asynchronous collapse of species compared to nonadaptive pollinator communities, meaning that not all pollinator species reach a tipping event simultaneously. These results suggest that it is essential to consider the adaptive capacity of pollinator communities for monitoring and conservation. Both the extent and the rate of stress change relative to the ability of communities to recover are critical environmental boundaries.
Collapse
Affiliation(s)
- Sjoerd Terpstra
- Graduate School of Informatics, University of Amsterdam, Amsterdam, The Netherlands
- Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands
| | - Flávia M. D. Marquitti
- Instituto de Física ‘Gleb Wataghin’ & Programa de Pós Graduação em Ecologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- International Centre for Theoretical Physics - South American Institute for Fundamental Research (ICTP-SAIFR), São Paulo, São Paulo, Brazil
| | - Vítor V. Vasconcelos
- Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Serrão JE, Plata-Rueda A, Martínez LC, Zanuncio JC. Side-effects of pesticides on non-target insects in agriculture: a mini-review. Naturwissenschaften 2022; 109:17. [PMID: 35138481 DOI: 10.1007/s00114-022-01788-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Climate change mediated by anthropogenic activity induces significant alterations on pest abundance and behavior and a potential increase in the use of agrochemicals for crop protection. Pesticides have been a tool in the control of pests, diseases, and weeds of agricultural systems. However, little attention has been given to their toxic effects on beneficial insect communities that contribute to the maintenance and sustainability of agroecosystems. In addition to pesticide-induced direct mortality, their sublethal effects on arthropod physiology and behavior must be considered for a complete analysis of their impact. This review describes the sublethal effects of pesticides on agriculturally beneficial insects and provides new information about the impacts on the behavior and physiology of these insects. The different types of sublethal effects of pesticides used in agriculture on pollinators, predators, parasitoids, and coprophagous insects were detailed.
Collapse
Affiliation(s)
- José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.
| | - Angelica Plata-Rueda
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Luis Carlos Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - José Cola Zanuncio
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| |
Collapse
|
9
|
|
10
|
Shoemaker LG, Walter JA, Gherardi LA, DeSiervo MH, Wisnoski NI. Writing mathematical ecology: A guide for authors and readers. Ecosphere 2021. [DOI: 10.1002/ecs2.3701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
| | - Jonathan A. Walter
- Department of Environmental Sciences University of Virginia Charlottesville Virginia 22904 USA
| | | | | | | |
Collapse
|
11
|
Parra-Tabla V, Arceo-Gómez G. Impacts of plant invasions in native plant-pollinator networks. THE NEW PHYTOLOGIST 2021; 230:2117-2128. [PMID: 33710642 DOI: 10.1111/nph.17339] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The disruption of mutualisms by invasive species has consequences for biodiversity loss and ecosystem function. Although invasive plant effects on the pollination of individual native species has been the subject of much study, their impacts on entire plant-pollinator communities are less understood. Community-level studies on plant invasion have mainly focused on two fronts: understanding the mechanisms that mediate their integration; and their effects on plant-pollinator network structure. Here we briefly review current knowledge and propose a more unified framework for evaluating invasive species integration and their effects on plant-pollinator communities. We further outline gaps in our understanding and propose ways to advance knowledge in this field. Specifically, modeling approaches have so far yielded important predictions regarding the outcome and drivers of invasive species effects on plant communities. However, experimental studies that test these predictions in the field are lacking. We further emphasize the need to understand the link between invasive plant effects on pollination network structure and their consequences for native plant population dynamics (population growth). Integrating demographic studies with those on pollination networks is thus key in order to achieve a more predictive understanding of pollinator-mediated effects of invasive species on the persistence of native plant biodiversity.
Collapse
Affiliation(s)
- Víctor Parra-Tabla
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, 97200, México
| | - Gerardo Arceo-Gómez
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| |
Collapse
|
12
|
Ruttan A, Lortie CJ, Haas SM. Shrubs as magnets for pollination: A test of facilitation and reciprocity in a shrub-annual facilitation system. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100008. [PMID: 36003594 PMCID: PMC9387484 DOI: 10.1016/j.cris.2021.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
Insect-pollinated shrub Larrea tridentata increases the pollinator visitation to annuals. The effect of Larrea tridentata on pollinator visitation is inconsistent between years. Wind-pollinated shrub Ambrosia dumosa reduces the visitation duration of flies to annuals. Surrounding annuals reduce the visitation duration of pollinators to the shrub Larrea tridentata.
The magnet species hypothesis proposes that flowering plants that are attractive to pollinators can increase the relative pollination rates of neighbouring plants by acting as ‘magnets.’ Here, we test the hypothesis that insect-pollinated shrub species Larrea tridentata and wind-pollinated shrub species Ambrosia dumosa act as magnets for the pollinator visitation of understory annual plant species in an arid ecosystem. As an extension to the magnet species hypothesis, we propose the double magnet species hypothesis in which we further test for reciprocity by the floral island created in the understory of the benefactor shrubs as an additional pollinator magnet for the shrub itself. We used an annual plant placed near each shrub and the open to measure the effect of shrubs on annuals. The double magnet species hypothesis was tested using L. tridentata with and without surrounding annuals. We measured pollinator visitation and visit duration using video and in-situ observation techniques to test whether shrubs increase pollinator visitation to understory annual plants, if insect-pollinated shrubs act as better pollinator magnets than wind-pollinated shrubs (to determine the effects of the floral resource itself), and whether shrubs with annuals in their understory have higher pollinator visitation rates relative to shrubs without annuals. We found that insect-pollinated shrubs increased the visitation rate and duration of visits by pollinators to their understory plants and that wind-pollinated shrubs decreased the duration of visits of some insect visitors, but these relationships varied between years. While the presence of annuals did not change the visitation rate of all possible pollinators to L. tridentata flowers, they did decrease the visitation duration of specifically bees, indicating a negative reciprocal effect of the understory on pollination. Thus, the concentrated floral resources of flowers on insect-pollinated shrubs can act as a magnet that attract pollinators but that in turn provide a cost to pollination of the shrub. However, while wind-pollinated shrubs may provide other benefits, they may provide a cost to the pollination of their understory. These findings support the magnet species hypothesis as an additional mechanism of facilitation by insect-pollinated shrubs to other plant species within arid ecosystems.
Collapse
|
13
|
Puche E, Jordán F, Rodrigo MA, Rojo C. Non‐trophic key players in aquatic ecosystems: a mesocosm experiment. OIKOS 2020. [DOI: 10.1111/oik.07476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Eric Puche
- Cavanilles Inst. of Biodiversity and Evolutionary Biology, Univ. of Valencia Spain
| | - Ferenc Jordán
- Balaton Limnological Inst., Centre for Ecological Research, Tihany, Hungary, and Evolutionary Systems Research Group, Centre for Ecological Research Tihany Hungary
| | - María A. Rodrigo
- Cavanilles Inst. of Biodiversity and Evolutionary Biology, Univ. of Valencia Spain
| | - Carmen Rojo
- Cavanilles Inst. of Biodiversity and Evolutionary Biology, Univ. of Valencia Spain
| |
Collapse
|