1
|
An H, Song X, Wang Z, Geng X, Zhou P, Zhai J, Sun W. Investigating the long-term response of plateau vegetation productivity to extreme climate: insights from a case study in Qinghai Province, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:333-349. [PMID: 38052751 DOI: 10.1007/s00484-023-02593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023]
Abstract
Over the past three decades, there has been a significant global climate change characterized by an increase in the intensity and frequency of extreme climate events. The vegetation status in Qinghai Province has undergone substantial changes, which are more pronounced than other regions in the Qinghai-Tibet Plateau. However, a clear understanding of the response characteristics of plateau vegetation to extreme climate events is currently lacking. In this study, we investigated the response of net primary productivity (NPP) to different forms of extreme climate events across regions characterized by varying levels of aridity and elevation gradients. Specifically, we observed a significant increase in NPP in relatively arid regions. Our findings indicate that, in relatively arid regions, single episodes of high-intensity precipitation have a pronounced positive effect (higher correlation) on NPP. Furthermore, in high-elevation regions (4000-6000 m), both the intensity and frequency of precipitation events are crucial factors for the increase in regional NPP. However, continuous precipitation can have significant negative impacts on certain areas within relatively wet regions. Regarding temperature, a reduction in the number of frost days within a year has been shown to lead to a significant increase in NPP in arid regions. This reduction allows vegetation growth rate to increase in regions where it was limited by low temperatures. Vegetation conditions in drought-poor regions are expected to continue to improve as extreme precipitation intensifies and extreme low-temperature events decrease.
Collapse
Affiliation(s)
- Hexuan An
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A & F University, Weihui Road 23, Yangling, 712100, China
| | - Xiaoyan Song
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A & F University, Weihui Road 23, Yangling, 712100, China.
| | - Ziyin Wang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A & F University, Weihui Road 23, Yangling, 712100, China
| | - Xubo Geng
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A & F University, Weihui Road 23, Yangling, 712100, China
| | - Pingping Zhou
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A & F University, Weihui Road 23, Yangling, 712100, China
| | - Jun Zhai
- Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Haidian District, Fengdedong Road 4, Beijing, 100094, China.
| | - Wenyi Sun
- State Key Lab Soil Eros & Dryland Farming Loess P, Northwest A&F University, Institute Soil & Water Conservat, Yangling, 712100, China
| |
Collapse
|
2
|
Camacho AM, Perotto-Baldivieso HL, Tanner EP, Montemayor AL, Gless WA, Exum J, Yamashita TJ, Foley AM, DeYoung RW, Nelson SD. The broad scale impact of climate change on planning aerial wildlife surveys with drone-based thermal cameras. Sci Rep 2023; 13:4455. [PMID: 36932162 PMCID: PMC10023802 DOI: 10.1038/s41598-023-31150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Helicopters used for aerial wildlife surveys are expensive, dangerous and time consuming. Drones and thermal infrared cameras can detect wildlife, though the ability to detect individuals is dependent on weather conditions. While we have a good understanding of local weather conditions, we do not have a broad-scale assessment of ambient temperature to plan drone wildlife surveys. Climate change will affect our ability to conduct thermal surveys in the future. Our objective was to determine optimal annual and daily time periods to conduct surveys. We present a case study in Texas, (United States of America [USA]) where we acquired and compared average monthly temperature data from 1990 to 2019, hourly temperature data from 2010 to 2019 and projected monthly temperature data from 2021 to 2040 to identify areas where surveys would detect a commonly studied ungulate (white-tailed deer [Odocoileus virginianus]) during sunny or cloudy conditions. Mean temperatures increased when comparing the 1990-2019 to 2010-2019 periods. Mean temperatures above the maximum ambient temperature in which white-tailed deer can be detected increased in 72, 10, 10, and 24 of the 254 Texas counties in June, July, August, and September, respectively. Future climate projections indicate that temperatures above the maximum ambient temperature in which white-tailed deer can be detected will increase in 32, 12, 15, and 47 counties in June, July, August, and September, respectively when comparing 2010-2019 with 2021-2040. This analysis can assist planning, and scheduling thermal drone wildlife surveys across the year and combined with daily data can be efficient to plan drone flights.
Collapse
Affiliation(s)
- Annalysa M Camacho
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | | | - Evan P Tanner
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Amanda L Montemayor
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Walter A Gless
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Jesse Exum
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Thomas J Yamashita
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Aaron M Foley
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Randy W DeYoung
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Shad D Nelson
- Dick and Mary Lewis Kleberg College of Agriculture and Natural Resources, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| |
Collapse
|
3
|
Havrilla CA, Bradford JB, Yackulic CB, Munson SM. Divergent climate impacts on
C
3
versus
C
4
grasses imply widespread 21st century shifts in grassland functional composition. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Caroline A. Havrilla
- Department of Forest and Rangeland Stewardship Colorado State University Fort Collins Colorado USA
| | - John B. Bradford
- U.S. Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| | - Charles B. Yackulic
- U.S. Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| | - Seth M. Munson
- U.S. Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| |
Collapse
|
4
|
Morford SL, Allred BW, Twidwell D, Jones MO, Maestas JD, Roberts CP, Naugle DE. Herbaceous production lost to tree encroachment in United States rangelands. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Scott L. Morford
- Numerical Terradynamic Simulation Group University of Montana Missoula Montana USA
| | - Brady W. Allred
- Numerical Terradynamic Simulation Group University of Montana Missoula Montana USA
- University of Montana, W.A. Franke College of Forestry and Conservation Missoula Montana USA
| | - Dirac Twidwell
- Department of Agronomy and Horticulture University of Nebraska–Lincoln Lincoln Nebraska USA
| | - Matthew O. Jones
- Numerical Terradynamic Simulation Group University of Montana Missoula Montana USA
- Regrow Agriculture Durham New Hampshire USA
| | - Jeremy D. Maestas
- US Department of Agriculture, Natural Resources Conservation Service Portland Oregon USA
| | - Caleb P. Roberts
- US Geological Survey, Arkansas Cooperative Fish & Wildlife Research Unit University of Arkansas Fayetteville Arkansas USA
| | - David E. Naugle
- Numerical Terradynamic Simulation Group University of Montana Missoula Montana USA
- University of Montana, W.A. Franke College of Forestry and Conservation Missoula Montana USA
| |
Collapse
|
5
|
Hudson AR, Peters DPC, Blair JM, Childers DL, Doran PT, Geil K, Gooseff M, Gross KL, Haddad NM, Pastore MA, Rudgers JA, Sala O, Seabloom EW, Shaver G. Cross-Site Comparisons of Dryland Ecosystem Response to Climate Change in the US Long-Term Ecological Research Network. Bioscience 2022; 72:889-907. [PMID: 36034512 PMCID: PMC9405733 DOI: 10.1093/biosci/biab134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change.
Collapse
Affiliation(s)
- Amy R Hudson
- Agricultural Research Service's Big Data Initiative and SCINet Program for Scientific Computing in Berwyn Heights , Maryland, United States
| | - Debra P C Peters
- Agricultural Research Service's Big Data Initiative and SCINet Program for Scientific Computing in Berwyn Heights , Maryland, United States
- US Department of Agriculture Agricultural Research Service's Jornada Experimental Range, Las Cruces , New Mexico, United States
- New Mexico State University , Las Cruces, New Mexico, United States
| | - John M Blair
- Kansas State University, Manhattan , Kansas, United States
| | | | - Peter T Doran
- Louisiana State University , Baton Rouge, Louisiana, United States
| | - Kerrie Geil
- Agricultural Research Service's Big Data Initiative and SCINet Program for Scientific Computing in Berwyn Heights , Maryland, United States
| | | | - Katherine L Gross
- W. K. Kellogg Biological Station, Vermont , United States
- Department of Plant Biology, Vermont , United States
| | - Nick M Haddad
- W. K. Kellogg Biological Station, Vermont , United States
- Department of Plant Biology, Vermont , United States
| | | | | | - Osvaldo Sala
- Arizona State University , Tempe, Arizona, United States
- Global Drylands Center and the School of Life Sciences, Arizona State University , Tempe, Arizona, United States
| | - Eric W Seabloom
- University of Minnesota , St. Paul, Minnesota, United States
| | - Gaius Shaver
- Marine Biological Laboratory, Woods Hole , Massachusetts, United States
| |
Collapse
|
6
|
OUP accepted manuscript. Bioscience 2022. [DOI: 10.1093/biosci/biac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Palmquist KA, Schlaepfer DR, Renne RR, Torbit SC, Doherty KE, Remington TE, Watson G, Bradford JB, Lauenroth WK. Divergent climate change effects on widespread dryland plant communities driven by climatic and ecohydrological gradients. GLOBAL CHANGE BIOLOGY 2021; 27:5169-5185. [PMID: 34189797 DOI: 10.1111/gcb.15776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Plant community response to climate change will be influenced by individual plant responses that emerge from competition for limiting resources that fluctuate through time and vary across space. Projecting these responses requires an approach that integrates environmental conditions and species interactions that result from future climatic variability. Dryland plant communities are being substantially affected by climate change because their structure and function are closely tied to precipitation and temperature, yet impacts vary substantially due to environmental heterogeneity, especially in topographically complex regions. Here, we quantified the effects of climate change on big sagebrush (Artemisia tridentata Nutt.) plant communities that span 76 million ha in the western United States. We used an individual-based plant simulation model that represents intra- and inter-specific competition for water availability, which is represented by a process-based soil water balance model. For dominant plant functional types, we quantified changes in biomass and characterized agreement among 52 future climate scenarios. We then used a multivariate matching algorithm to generate fine-scale interpolated surfaces of functional type biomass for our study area. Results suggest geographically divergent responses of big sagebrush to climate change (changes in biomass of -20% to +27%), declines in perennial C3 grass and perennial forb biomass in most sites, and widespread, consistent, and sometimes large increases in perennial C4 grasses. The largest declines in big sagebrush, perennial C3 grass and perennial forb biomass were simulated in warm, dry sites. In contrast, we simulated no change or increases in functional type biomass in cold, moist sites. There was high agreement among climate scenarios on climate change impacts to functional type biomass, except for big sagebrush. Collectively, these results suggest divergent responses to warming in moisture-limited versus temperature-limited sites and potential shifts in the relative importance of some of the dominant functional types that result from competition for limiting resources.
Collapse
Affiliation(s)
- Kyle A Palmquist
- Department of Biological Sciences, Marshall University, Huntington, WV, USA
| | - Daniel R Schlaepfer
- US Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Rachel R Renne
- US Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Stephen C Torbit
- US Fish and Wildlife Service, Mountain-Prairie Region, Lakewood, CO, USA
| | - Kevin E Doherty
- US Fish and Wildlife Service, Mountain-Prairie Region, Lakewood, CO, USA
| | | | - Greg Watson
- US Fish and Wildlife Service, Mountain-Prairie Region, Lakewood, CO, USA
| | - John B Bradford
- US Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - William K Lauenroth
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Martin JM, Zarestky J, Briske DD, Barboza PS. Vulnerability assessment of the multi‐sector North American bison
Bison bison
management system to climate change. PEOPLE AND NATURE 2021. [DOI: 10.1002/pan3.10209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jeff M. Martin
- Center of Excellence for Bison Studies South Dakota State University Rapid City SD USA
- Department of Ecology and Conservation Biology Texas A&M University College Station TX USA
| | - Jill Zarestky
- School of Education Colorado State University Fort Collins CO USA
| | - David D. Briske
- Department of Ecology and Conservation Biology Texas A&M University College Station TX USA
| | - Perry S. Barboza
- Department of Ecology and Conservation Biology Texas A&M University College Station TX USA
- Department of Rangeland, Wildlife, and Fisheries Management Texas A&M University College Station TX USA
| |
Collapse
|