1
|
Ziegler SL, Atencio WE, Carroll JM, Byers JE. High parasite prevalence in an ecosystem engineer correlated with both local- and landscape-level factors. Oecologia 2024; 205:423-435. [PMID: 38898336 DOI: 10.1007/s00442-024-05581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Spatial variation in parasitic infection may have many physical and biological drivers. Uncovering these drivers may be especially important for parasites of ecosystem engineers because the engineers are foundational to their communities. Oysters are an important coastal ecosystem engineer that have declined drastically worldwide, in part due to enhanced cases of lethal oyster diseases, such as Dermo and MSX, caused by the protozoan parasites Perkinsus marinus and Haplosporidium nelsoni, respectively. Besides water quality and hydrodynamics, there is little information on how other variables influence the prevalence and intensity of these pathogens in oysters across a regional scale. To examine drivers of spatial variation in these oyster parasites-including host size, local reef properties, and landscape properties-we sampled 24 reefs systematically spread along the coast of Georgia, USA. Across sites, we found universally high prevalence of oysters with at least one of these parasites (91.02% ± 8.89, mean ± SD). Not only are high levels of parasite prevalence potentially problematic for a pivotal ecosystem engineer, but also low spatial variability may limit the explanatory power of variables across a regional scale. Our statistical models explained between 18 and 42% of the variation in spatial patterns of prevalence and intensity of these microparasites. Interestingly, landscape context was a positive predictor of P. marinus, but a negative predictor of H. nelsoni. Overall, our findings suggest that factors driving parasite prevalence and intensity operate across multiple spatial scales, and the same factor can both facilitate and hinder different parasites within the same host species.
Collapse
Affiliation(s)
| | - Wil E Atencio
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - John M Carroll
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - James E Byers
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Hendrick GC, Nicholson MD, Pagan JA, Artim JM, Dolan MC, Sikkel PC. Blood meal identification reveals extremely broad host range and host-bias in a temporary ectoparasite of coral reef fishes. Oecologia 2023; 203:349-360. [PMID: 37951847 DOI: 10.1007/s00442-023-05468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Appreciation for the role of cryptofauna in ecological systems has increased dramatically over the past decade. The impacts blood-feeding arthropods, such as ticks and mosquitos, have on terrestrial communities are the subject of hundreds of papers annually. However, blood-feeding arthropods have been largely ignored in marine environments. Gnathiid isopods, often referred to as "ticks of the sea", are temporary external parasites of fishes. They are found in all marine environments and have many consequential impacts on host fitness. Because they are highly mobile and only associated with their hosts while obtaining a blood meal, their broader trophic connections are difficult to discern. Conventional methods rely heavily on detecting gnathiids on wild-caught fishes. However, this approach typically yields few gnathiids and does not account for hosts that avoid capture. To overcome this limitation, we sequenced blood meals of free-living gnathiids collected in light traps to assess the host range and community-dependent exploitation of Caribbean gnathiid isopods. Using fish-specific COI (cox1) primers, sequencing individual blood meals from 1060 gnathiids resulted in the identification of 70 host fish species from 27 families. Comparisons of fish assemblages to blood meal identification frequencies at four collection sites indicated that fishes within the families Haemulidae (grunts) and Lutjanidae (snappers) were exploited more frequently than expected based on their biomass, and Labrid parrotfishes were exploited less frequently than expected. The broad host range along with the biased exploitation of diel-migratory species has important implications for the role gnathiid isopods play in Caribbean coral reef communities.
Collapse
Affiliation(s)
- Gina C Hendrick
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL, USA
| | - Matthew D Nicholson
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL, USA
| | - J Andres Pagan
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO - Universidade do Porto, Vairão, Portugal
| | - John M Artim
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Maureen C Dolan
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA
| | - Paul C Sikkel
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL, USA.
- Water Research Group, Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
3
|
Pereira A, Soares MC, Santos T, Poças A, Pérez-Losada M, Apprill A, Sikkel PC, Xavier R. Reef Location and Client Diversity Influence the Skin Microbiome of the Caribbean Cleaner Goby Elacatinus evelynae. MICROBIAL ECOLOGY 2023; 85:372-382. [PMID: 35275230 DOI: 10.1007/s00248-022-01984-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Fish-associated microorganisms are known to be affected by the environment and other external factors, such as microbial transfer between interacting partners. One of the most iconic mutualistic interactions on coral reefs is the cleaning interactions between cleaner fishes and their clients, during which direct physical contact occurs. Here, we characterized the skin bacteria of the Caribbean cleaner sharknose goby, Elacatinus evelynae, in four coral reefs of the US Virgin Islands using sequencing of the V4 region of the 16S rRNA gene. We specifically tested the relationship between gobies' level of interaction with clients and skin microbiota diversity and composition. Our results showed differences in microbial alpha- and beta-diversity in the skin of gobies from different reef habitats and high inter-individual variation in microbiota diversity and structure. Overall, the results showed that fish-to-fish direct contact and specifically, access to a diverse clientele, influences the bacterial diversity and structure of cleaner gobies' skin. Because of their frequent contact with clients, and therefore, high potential for microbial exchange, cleaner fish may serve as models in future studies aiming to understand the role of social microbial transfer in reef fish communities.
Collapse
Affiliation(s)
- Ana Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, 4099-002, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal.
| | - Marta C Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
| | - Teresa Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
| | - Ana Poças
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
| | - Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA
| | - Amy Apprill
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Paul C Sikkel
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
- Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Raquel Xavier
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
| |
Collapse
|
4
|
Phenological variation in parasite load and inflammatory response in a lizard with an asynchronous reproductive cycle. Naturwissenschaften 2022; 109:34. [DOI: 10.1007/s00114-022-01793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 10/17/2022]
|
5
|
Assessing Effects of Impounded Water on Life History, Reproduction, and Diets of a Fluvial Specialist Fish. AMERICAN MIDLAND NATURALIST 2022. [DOI: 10.1674/0003-0031-187.2.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Spitzer CA, Anderson TW, Sikkel PC. Habitat associations and impacts on a juvenile fish host by a temperate gnathiid isopod. Int J Parasitol Parasites Wildl 2022; 17:65-73. [PMID: 34984169 PMCID: PMC8693287 DOI: 10.1016/j.ijppaw.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/11/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
The distribution and abundance of organisms is typically shaped by multiple biotic and abiotic processes. Micropredators are parasite-like organisms that are smaller than their hosts and/or prey and feed on multiple hosts during a given life stage. Unlike typical parasites, however, they spend much or most of their time free-living, associating only temporarily with hosts. In the ocean, micropredators can impact multiple fish species, and in particular can have significant lethal and sub-lethal effects on newly settled fish. Although gnathiid isopods are abundant and primary micropredators in coral reef ecosystems, their impacts are relatively unexplored within sub-tidal temperate rocky reefs. We investigated the distribution of juvenile gnathiid isopods along sub-tidal temperate rocky reefs and tested trap methodology. We also quantified both the sub-lethal and lethal impacts of feeding-stage juvenile gnathiid isopods on juvenile, post-settlement reef fish, Heterostichus rostratus (giant kelpfish). We were most interested in determining the relationship between gnathiid infestation level and fish swimming performance, in particular swimming metrics relevant to predator avoidance maneuvers. We found that Gnathia tridens was present in rocky reefs rather than embayments along the Southern California coastline and that within rocky reefs, gnathiids occurred in the highest densities in lighted traps. Surprisingly, we observed almost no influence of fish size or gnathiid sub-lethal infestation level on ambient or burst swimming performance metrics. However, burst duration was reduced by gnathiid infestation, which is important in predator avoidance. There were significant differences in survivorship among small fish compared to large fish as a result of gnathiid infestation. Larger fish survived higher numbers of gnathiids than smaller fish, indicating that parasite-induced mortality is greater for smaller fish. Investigations of the effects of micropredators on subsequent predator-mediated mortality, including the susceptibility of fishes and their individual responses to micropredators, can further contribute to our understanding of processes affecting recruitment in resident reef fish populations. Further research, especially within temperate sub-tidal ecosystems, is needed to understand and highlight the overlooked importance of micropredation in shaping fish populations within a reefscape. Gnathiid isopods are more abundant in sub-tidal rocky reef than in bay habitats off southern California. Among the trap designs tested, lighted traps were most effective. Wave height and lunar period also impacted capture rates. For H. rostratus, gnathiids alter fish swimming performance at varying levels of infestation. Mortality rates from gnathiid infestation were inversely related to the size of fish host.
Collapse
Affiliation(s)
- Claire A. Spitzer
- Department of Biology and Coastal and Marine Institute, San Diego State University, San Diego, CA, 92182, USA
- Corresponding author.
| | - Todd W. Anderson
- Department of Biology and Coastal and Marine Institute, San Diego State University, San Diego, CA, 92182, USA
| | - Paul C. Sikkel
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
7
|
Côté IM, Brandl SJ. Functional niches of cleanerfish species are mediated by habitat use, cleaning intensity and client selectivity. J Anim Ecol 2021; 90:2834-2847. [PMID: 34478567 DOI: 10.1111/1365-2656.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
An animal's functional niche is a complex, multidimensional construct, mediated by an individual's morphology, physiology and behaviour. Behavioural aspects of the niche can be difficult to quantify, as their expression is often subtle and tailored to an infinite number of different situations that involve sophisticated mechanisms such as mutualisms, species dominance or fear effects. The extreme diversity of tropical fish assemblages has led to extensive debate over the extent to which species differ in their resource use and functional role. Ectoparasite removal by cleanerfish species is considered a behaviourally complex interspecific interaction in vertebrates, but differences in the services rendered by various species of cleanerfish, and potential consequences for the range of clients (i.e. resources) they attract, have rarely been examined. Here, we quantify differences among three coexisting species of morphologically similar cleaner wrasses (Labroides bicolor, L. dimidiatus and L. pectoralis) in the global centre of marine biodiversity, the Coral Triangle. We found no clear taxonomic partitioning of clients among cleanerfishes. However, the three cleanerfish species exhibited distinct habitat preferences, and differed in their cleaning intensity: L. bicolor serviced the fewest species and clients, while L. pectoralis serviced the most clients and spent the most time cleaning. Accordingly, L. pectoralis showed no preference for clients based on client size or abundance, while both L. bicolor and L. dimidiatus had a higher likelihood of interacting with clients based on their size (larger client species in L. bicolor, smaller client species in L. dimidiatus) and abundance (more abundant client species for both). Our results suggest that the services rendered by the three species of cleanerfishes differ in their spatial availability, quality and selectivity, thus permitting the coexistence of these species despite their ecological similarity. This, in turn, creates a complex seascape of species-specific cleaning services that underpins crucial biotic interactions in the ocean's most diverse ecosystem.
Collapse
Affiliation(s)
- Isabelle M Côté
- Earth to Ocean Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Simon J Brandl
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, USA
| |
Collapse
|