1
|
Merriell BD, Manseau M, Wilson PJ. Assessing the suitability of a one-time sampling event for close-kin mark-recapture: A caribou case study. Ecol Evol 2024; 14:e70230. [PMID: 39234160 PMCID: PMC11371883 DOI: 10.1002/ece3.70230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Abundance estimation is frequently an objective of conservation and monitoring initiatives for threatened and other managed populations. While abundance estimation via capture-mark-recapture or spatially explicit capture-recapture is now common, such approaches are logistically challenging and expensive for species such as boreal caribou (Rangifer tarandus), which inhabit remote regions, are widely dispersed, and exist at low densities. Fortunately, the recently developed 'close-kin mark-recapture' (CKMR) framework, which uses the number of kin pairs obtained within a sample to generate an abundance estimate, eliminates the need for multiple sampling events. As a result, some caribou managers are interested in using this method to generate an abundance estimate from a single, non-invasive sampling event for caribou populations. We conducted a simulation study using realistic boreal caribou demographic rates and population sizes to assess how population size and the proportion of the population surveyed impact the accuracy and precision of single-survey CKMR-based abundance estimates. Our results indicated that abundance estimates were biased and highly imprecise when very small proportions of the population were sampled, regardless of the population size. However, the larger the population size, the smaller the required proportion of the population surveyed to generate both accurate and reasonably precise estimates. Additionally, we also present a case study in which we used the CKMR framework to generate annual female abundance estimates for a small caribou population in Jasper National Park, Alberta, Canada, from 2006 to 2015 and compared them to existing published capture-mark-recapture-based estimates. Both the accuracy and precision of the annual CKMR-based abundance estimates varied across years and were sensitive to the proportion of pairwise kinship comparisons which yielded a mother-offspring pair. Taken together, our study demonstrates that it is possible to generate CKMR-based abundance estimates from a single sampling event for small caribou populations, so long as a sufficient sampling intensity can be achieved.
Collapse
Affiliation(s)
- Brandon D Merriell
- Environmental and Life Sciences Department Trent University Peterborough Ontario Canada
| | - Micheline Manseau
- Environmental and Life Sciences Department Trent University Peterborough Ontario Canada
- Landscape Science and Technology Division, Environment and Climate Change Canada Ottawa Ontario Canada
| | - Paul J Wilson
- Environmental and Life Sciences Department Trent University Peterborough Ontario Canada
| |
Collapse
|
2
|
Lamb CT, Williams S, Boutin S, Bridger M, Cichowski D, Cornhill K, DeMars C, Dickie M, Ernst B, Ford A, Gillingham MP, Greene L, Heard DC, Hebblewhite M, Hervieux D, Klaczek M, McLellan BN, McNay RS, Neufeld L, Nobert B, Nowak JJ, Pelletier A, Reid A, Roberts AM, Russell M, Seip D, Seip C, Shores C, Steenweg R, White S, Wittmer HU, Wong M, Zimmerman KL, Serrouya R. Effectiveness of population-based recovery actions for threatened southern mountain caribou. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2965. [PMID: 38629596 DOI: 10.1002/eap.2965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 06/04/2024]
Abstract
Habitat loss is affecting many species, including the southern mountain caribou (Rangifer tarandus caribou) population in western North America. Over the last half century, this threatened caribou population's range and abundance have dramatically contracted. An integrated population model was used to analyze 51 years (1973-2023) of demographic data from 40 southern mountain caribou subpopulations to assess the effectiveness of population-based recovery actions at increasing population growth. Reducing potential limiting factors on threatened caribou populations offered a rare opportunity to identify the causes of decline and assess methods of recovery. Southern mountain caribou abundance declined by 51% between 1991 and 2023, and 37% of subpopulations were functionally extirpated. Wolf reduction was the only recovery action that consistently increased population growth when applied in isolation, and combinations of wolf reductions with maternal penning or supplemental feeding provided rapid growth but were applied to only four subpopulations. As of 2023, recovery actions have increased the abundance of southern mountain caribou by 52%, compared to a simulation with no interventions. When predation pressure was reduced, rapid population growth was observed, even under contemporary climate change and high levels of habitat loss. Unless predation is reduced, caribou subpopulations will continue to be extirpated well before habitat conservation and restoration can become effective.
Collapse
Affiliation(s)
- Clayton T Lamb
- Wildlife Science Center, Biodiversity Pathways, Kelowna, British Columbia, Canada
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Sara Williams
- Wildlife Biology Program, University of Montana, Missoula, Montana, USA
| | - Stan Boutin
- Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Bridger
- Ministry of Water, Land and Resource Stewardship, Government of British Columbia, Victoria, British Columbia, Canada
| | | | - Kristina Cornhill
- Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Craig DeMars
- Wildlife Science Center, Biodiversity Pathways, Kelowna, British Columbia, Canada
| | - Melanie Dickie
- Wildlife Science Center, Biodiversity Pathways, Kelowna, British Columbia, Canada
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Bevan Ernst
- Ministry of Water, Land and Resource Stewardship, Government of British Columbia, Victoria, British Columbia, Canada
| | - Adam Ford
- Wildlife Science Center, Biodiversity Pathways, Kelowna, British Columbia, Canada
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael P Gillingham
- Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Laura Greene
- Ministry of Water, Land and Resource Stewardship, Government of British Columbia, Victoria, British Columbia, Canada
| | - Douglas C Heard
- Tithonus Wildlife Research, Prince George, British Columbia, Canada
| | - Mark Hebblewhite
- Wildlife Biology Program, University of Montana, Missoula, Montana, USA
| | - Dave Hervieux
- Alberta Environment and Protected Areas, Government of Alberta, Grande Prairie, Alberta, Canada
| | - Mike Klaczek
- Ministry of Forests, Government of British Columbia, Victoria, British Columbia, Canada
| | - Bruce N McLellan
- International Union for the Conservation of Nature Bear Specialist Group, D'Arcy, British Columbia, Canada
| | - R Scott McNay
- Wildlife Infometrics Inc., Mackenzie, British Columbia, Canada
| | | | - Barry Nobert
- Alberta Environment and Protected Areas, Government of Alberta, Grande Prairie, Alberta, Canada
| | | | - Agnès Pelletier
- Ministry of Water, Land and Resource Stewardship, Government of British Columbia, Victoria, British Columbia, Canada
| | - Aaron Reid
- Ministry of Water, Land and Resource Stewardship, Government of British Columbia, Victoria, British Columbia, Canada
| | - Anne-Marie Roberts
- Ministry of Water, Land and Resource Stewardship, Government of British Columbia, Victoria, British Columbia, Canada
| | - Mike Russell
- Alberta Environment and Protected Areas, Government of Alberta, Grande Prairie, Alberta, Canada
| | - Dale Seip
- Ministry of Environment, Government of British Columbia, Fort St. John, British Columbia, Canada
| | - Caroline Seip
- Alberta Environment and Protected Areas, Government of Alberta, Grande Prairie, Alberta, Canada
| | - Carolyn Shores
- Ministry of Water, Land and Resource Stewardship, Government of British Columbia, Victoria, British Columbia, Canada
| | - Robin Steenweg
- Canadian Wildlife Service, Environment and Climate Change Canada, Kelowna, British Columbia, Canada
| | - Shane White
- Ministry of Forests, Government of British Columbia, Victoria, British Columbia, Canada
| | - Heiko U Wittmer
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Mark Wong
- Ministry of Water, Land and Resource Stewardship, Government of British Columbia, Victoria, British Columbia, Canada
| | - Kathryn L Zimmerman
- Ministry of Water, Land and Resource Stewardship, Government of British Columbia, Victoria, British Columbia, Canada
| | - Robert Serrouya
- Wildlife Science Center, Biodiversity Pathways, Kelowna, British Columbia, Canada
| |
Collapse
|
4
|
McNay RS, Lamb CT, Giguere L, Williams SH, Martin H, Sutherland GD, Hebblewhite M. Demographic responses of nearly extirpated endangered mountain caribou to recovery actions in Central British Columbia. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2580. [PMID: 35319129 PMCID: PMC9285560 DOI: 10.1002/eap.2580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 06/01/2023]
Abstract
Recovering endangered species is a difficult and often controversial task that challenges status quo land uses. Southern Mountain caribou are a threatened ecotype of caribou that historically ranged in southwestern Canada and northwestern USA and epitomize the tension between resource extraction, biodiversity conservation, and Indigenous Peoples' treaty rights. Human-induced habitat alteration is considered the ultimate cause of caribou population declines, whereby an increased abundance of primary prey-such as moose and deer-elevates predator populations and creates unsustainable caribou mortality. Here we focus on the Klinse-Za and Quintette subpopulations, part of the endangered Central Group of Southern Mountain caribou in British Columbia. These subpopulations were trending toward immediate extirpation until a collaborative group initiated recovery by implementing two short-term recovery actions. We test the effectiveness of these recovery actions-maternity penning of adult females and their calves, and the reduction of a primary predator, wolves-in increasing vital rates and population growth. Klinse-Za received both recovery actions, whereas Quintette only received wolf reductions, providing an opportunity to test efficacy between recovery actions. Between 1995 and 2021, we followed 162 collared female caribou for 414 animal-years to estimate survival and used aerial counts to estimate population abundance and calf recruitment. We combined these data in an integrated population model to estimate female population growth, total population abundance, and recovery action effectiveness. Results suggest that the subpopulations were declining rapidly (λ = 0.90-0.93) before interventions and would have been functionally extirpated (<10 animals) within 10-15 years. Wolf reduction increased population growth rates by ~0.12 for each subpopulation. Wolf reduction halted the decline of Quintette caribou and allowed them to increase (λ = 1.05), but alone would have only stabilized the Klinse-Za (λ = 1.02). However, maternity penning in the Klinse-Za increased population growth by a further ~0.06, which when combined with wolf reductions, allowed populations to grow (λ = 1.08). Taken together, the recovery actions in these subpopulations increased adult female survival, calf recruitment, and overall population growth, more than doubling abundance. Our results suggest that maternity penning and wolf reductions can be effective at increasing caribou numbers in the short term, while long-term commitments to habitat protection and restoration are made.
Collapse
Affiliation(s)
| | - Clayton T. Lamb
- Department of BiologyUniversity of British ColumbiaKelownaBritish ColumbiaCanada
- Department of Ecosystem and Conservation SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Line Giguere
- Wildlife Infometrics IncMackenzieBritish ColumbiaCanada
| | - Sara H. Williams
- Department of Ecosystem and Conservation SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Hans Martin
- Department of Ecosystem and Conservation SciencesUniversity of MontanaMissoulaMontanaUSA
| | | | - Mark Hebblewhite
- Department of Ecosystem and Conservation SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
5
|
Martin HW, Hebblewhite M, Merrill EH. Large herbivores in a partially migratory population search for the ideal free home. Ecology 2022; 103:e3652. [PMID: 35084736 PMCID: PMC10162400 DOI: 10.1002/ecy.3652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 09/10/2021] [Accepted: 10/26/2021] [Indexed: 11/07/2022]
Abstract
Migration is a tactic used across taxa to access resources in temporally heterogenous landscapes. Populations that migrate can attain higher abundances because such movements allow access to higher quality resources, or reduction in predation risk resulting in increased fitness. However, most migratory species occur in partially migratory populations, a mix of migratory and non-migratory individuals. It is thought that the portion of migrants in a partial migration population is maintained either through 1) a population-level evolutionary stable state where counteracting density-dependent vital rates act on migrants and residents to balance fitness, or 2) conditional migration, where the propensity to migrate is influenced by the individual's state. However, in many respects, migration is also a form of habitat selection and the proportion of migrants and residents may be the result of density-dependent habitat selection. Here, we test whether the theory of Ideal Free Distribution (IFD) can explain the coexistence of different migratory tactics in a partially migratory population. IFD predicts individuals exhibit density-dependent vital rates and select different migratory tactics to maximize individual fitness resulting in equal fitness (λ) between tactics. We tested the predictions of IFD in a partially migratory elk population that declined by 70% with 19 years of demographic data and migratory tactic switching rates from >300 individuals. We found evidence of density dependence for resident pregnancy and adult female survival providing a fitness incentive to switch tactics. Despite differences in vital rates between migratory tactics, mean λ (fitness) was equal. However, as predicted by the IFD, individuals switched tactics toward those of higher fitness. Our analysis reveals that partial migration may be driven by tactic selection that follows the ideal free distribution. These findings reinforce that migration across taxa may be a polymorphic behavior in large herbivores where migratory tactic selection is determined by differential costs and benefits, mediated by density-dependence.
Collapse
Affiliation(s)
- Hans W Martin
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - Mark Hebblewhite
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - Evelyn H Merrill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|