1
|
Jian L, Li X, Zheng X, Peng J, Zhang T, Lin L, Wang J. Influence of habitat utilization strategies on trace element signatures in egg contents of green turtles nesting on Xisha Islands, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177149. [PMID: 39442727 DOI: 10.1016/j.scitotenv.2024.177149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Habitat utilization significantly influences the accumulation of chemical pollutants, including trace elements (TEs), in the tissues of large marine organisms. Previous research has demonstrated that sea turtles nesting in the same location may employ distinct foraging strategies. This study investigated the influence of habitat use strategies on the concentrations of 16 TEs in the eggs of green turtles (Chelonia mydas) nesting on the Xisha Islands. The analysis incorporated stable carbon (δ13C) and nitrogen (δ15N) isotopes, as well as characteristic elements. Additionally, inter-relationships between TEs were examined. The nesting female green turtles were categorized into two foraging groups based on isotopic signatures, namely oceanic (δ13C values: -21.5 to -17.0 ‰; δ15N values: 7.10 to 12.5 ‰) and neritic (δ13C values: -14.4 to -9.95 ‰ and δ15N values: 5.10 to 10.0 ‰). Different TE patterns were observed in the egg contents of these two groups. The neritic group exhibited elevated levels of V and Cu, which positively corrected with δ13C values. Conversely, the oceanic group displayed higher levels of Zn, Cd, Se, Sn, As and Hg, which positively associated with δ15N values. This distribution pattern is attributed to variations in background TE concentrations in the respective foraging habitats. Additionally, prey items and trophic levels of green turtles may contribute to the observed inter-group differences in TE concentrations (e.g. Zn, As, Se, Sn) found in their eggs, warranting further research. This study provides valuable information about habitat utilization patterns and TE distribution in green turtles nesting on the Xisha Islands. The findings enhance our understanding of TE accumulation mechanisms in turtle tissues and eggs, which is significant for the conservation of this endangered species, the green sea turtle.
Collapse
Affiliation(s)
- Li Jian
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573100, China
| | - Xiang Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Xiaobo Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingyue Peng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Ting Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Liu Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
2
|
Bezerra MF, Barrios-Rodriguez CA, Rezende CE, López-Castro MC, Lacerda LD. Trophic ecology of sympatric sea turtles in the tropical Atlantic coast of Brazil. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106406. [PMID: 38377937 DOI: 10.1016/j.marenvres.2024.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
The Tropical Atlantic coast of Brazil is a hotspot area for multiple sea turtle species at all life stages. The multiple nearshore reefs and beaches, oceanic islands, and the only atoll in the south Atlantic Ocean, are suitable for year-round foraging, migration corridors, and nesting activities of five sea turtle species. Still, relatively few studies have assessed trophic niche among sympatric sea turtles which can provide a better understanding of how closely related species compete/partition the available resources. Using multiple biogeochemical tracers (i.e., nitrogen (δ15N) and carbon (δ13C) stable isotopes, and mercury (Hg)), we disentangled the trophic niches of four sea turtle species - the green turtle (Chelonia mydas), the loggerhead turtle (Caretta), the hawksbill turtle (Eretmochelys imbricata), and the olive ridley turtle (Lepidochelys olivacea) - co-occurring in nesting and foraging habitats along the northeastern coast of Brazil. We found interspecific differences in isotopic and contamination niches, as well as intraspecific niche variation associated with life stage. Differences in the estimation niche models associated to life-stage in C. caretta support the notion of ontogenetic shift in habitat and diet composition previously reported for this species. Oceanic habitat signatures were observed in juvenile green turtles and adult olive turtles, while nearshore habitat signatures were observed in adult hawksbill turtles.
Collapse
Affiliation(s)
- Moises F Bezerra
- Universidade Federal Do Ceará - Instituto de Ciências Do Mar (LABOMAR-UFC). Fortaleza, Ceará, Brazil.
| | - Cesar A Barrios-Rodriguez
- Universidade Federal Do Ceará - Instituto de Ciências Do Mar (LABOMAR-UFC). Fortaleza, Ceará, Brazil
| | - Carlos E Rezende
- Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro Campos Dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Luiz D Lacerda
- Universidade Federal Do Ceará - Instituto de Ciências Do Mar (LABOMAR-UFC). Fortaleza, Ceará, Brazil
| |
Collapse
|
3
|
Weber S, Cullen JA, Fuentes MMPB. Isotopic niche overlap among foraging marine turtle species in the Gulf of Mexico. Ecol Evol 2023; 13:e10741. [PMID: 38034330 PMCID: PMC10682896 DOI: 10.1002/ece3.10741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Sympatric species may overlap in their use of habitat and dietary resources, which can increase competition. Comparing the ecological niches and quantifying the degree of niche overlap among these species can provide insights into the extent of resource overlap. This information can be used to guide multispecies management approaches tailored to protect priority habitats that offer the most resources for multiple species. Stable isotope analysis is a valuable tool used to investigate spatial and trophic niches, though few studies have employed this method for comparisons among sympatric marine turtle species. For this study, stable carbon, nitrogen, and sulfur isotope values from epidermis tissue were used to quantify isotopic overlap and compare isotopic niche size in loggerhead (Caretta caretta), green (Chelonia mydas), and Kemp's ridley (Lepidochelys kempii) turtles sampled from a shared foraging area located offshore of Crystal River, Florida, USA. Overall, the results revealed high degrees of isotopic overlap (>68%) among species, particularly between loggerhead and Kemp's ridley turtles (85 to 91%), which indicates there may be interspecific competition for resources. Samples from green turtles had the widest range of isotopic values, indicating they exhibit higher variability in diet and habitat type. Samples from loggerhead turtles had the most enriched mean δ34S, suggesting they may forage in slightly different micro-environments compared with the other species. Finally, samples from Kemp's ridley turtles exhibited the smallest niche size, which is indicative of a narrower use of resources. This is one of the first studies to investigate resource use in a multispecies foraging aggregation of marine turtles using three isotopic tracers. These findings provide a foundation for future research into the foraging ecology of sympatric marine turtle species and can be used to inform effective multispecies management efforts.
Collapse
Affiliation(s)
- Savannah Weber
- Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Joshua A. Cullen
- Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Mariana M. P. B. Fuentes
- Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
4
|
García-Seoane R, Viana IG, Bode A. Using MixSIAR to quantify mixed contributions of primary producers from amino acid δ 15N of marine consumers. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105792. [PMID: 36371951 DOI: 10.1016/j.marenvres.2022.105792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 05/21/2023]
Abstract
Estimations of the trophic position and the food web nitrogen baseline from compound-specific isotope analysis of individual amino acids (CSIA-AA) are challenged when the diet of consumer organisms relies on different proportions of vascular and non-vascular primary producers. Here we propose a method to infer such proportions using mixing models and the δ15N CSIA-AA values from marine herbivores. Combining published and new data, we first characterized CSIA-AA values in phytoplankton, macroalgae and vascular plants, and determined their characteristic β values (i.e. the isotopic difference between trophic and source AA). Then, we applied MixSIAR Bayesian isotope mixing models to investigate the transfer of these isotopic signals to marine herbivores (molluscs, green turtles, zooplankton and fish), and their utility to quantify autotrophic sources. We demonstrated that primary producer groups have distinct δ15NAA fingerprints that can be tracked into their primary consumers, thus offering a rapid solution to quantify resource utilization and estimate βmix values in mixed-sourced environments.
Collapse
Affiliation(s)
- R García-Seoane
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de A Coruña, 15001, A Coruña, Spain.
| | - I G Viana
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de A Coruña, 15001, A Coruña, Spain
| | - A Bode
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de A Coruña, 15001, A Coruña, Spain
| |
Collapse
|
5
|
Díaz-Abad L, Bacco-Mannina N, Miguel Madeira F, Serrao EA, Regalla A, Patrício AR, Frade PR. Red, Gold and Green: Microbial Contribution of Rhodophyta and Other Algae to Green Turtle ( Chelonia mydas) Gut Microbiome. Microorganisms 2022; 10:microorganisms10101988. [PMID: 36296266 PMCID: PMC9610419 DOI: 10.3390/microorganisms10101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
The fitness of the endangered green sea turtle (Chelonia mydas) may be strongly affected by its gut microbiome, as microbes play important roles in host nutrition and health. This study aimed at establishing environmental microbial baselines that can be used to assess turtle health under altered future conditions. We characterized the microbiome associated with the gastrointestinal tract of green turtles from Guinea Bissau in different life stages and associated with their food items, using 16S rRNA metabarcoding. We found that the most abundant (% relative abundance) bacterial phyla across the gastrointestinal sections were Proteobacteria (68.1 ± 13.9% “amplicon sequence variants”, ASVs), Bacteroidetes (15.1 ± 10.1%) and Firmicutes (14.7 ± 21.7%). Additionally, we found the presence of two red algae bacterial indicator ASVs (the Alphaproteobacteria Brucella pinnipedialis with 75 ± 0% and a Gammaproteobacteria identified as methanotrophic endosymbiont of Bathymodiolus, with <1%) in cloacal compartments, along with six bacterial ASVs shared only between cloacal and local environmental red algae samples. We corroborate previous results demonstrating that green turtles fed on red algae (but, to a lower extent, also seagrass and brown algae), thus, acquiring microbial components that potentially aid them digest these food items. This study is a foundation for better understanding the microbial composition of sea turtle digestive tracts.
Collapse
Affiliation(s)
- Lucía Díaz-Abad
- CCMAR—Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal
- IMBRSea, International Master of Science in Marine Biological Resources, IMBRSea Universities Consortium, 9000 Ghent, Belgium
| | | | - Fernando Miguel Madeira
- cE3c—Centre for Ecology, Evolution and Environmental Changes, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Ester A. Serrao
- CCMAR—Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal
- CIBIO/InBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Aissa Regalla
- IBAP—Instituto da Biodiversidade e das Áreas Protegidas Dr. Alfredo Simão da Silva, Bissau 1220, Guinea-Bissau
| | - Ana R. Patrício
- MARE—Marine and Environmental Sciences Centre, Ispa—Instituto Universitário, 1149-041 Lisbon, Portugal
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, Cornwall, UK
| | - Pedro R. Frade
- CCMAR—Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal
- Natural History Museum Vienna, 1010 Vienna, Austria
- Correspondence:
| |
Collapse
|
6
|
Turner Tomaszewicz CN, Liles MJ, Avens L, Seminoff JA. Tracking movements and growth of post-hatchling to adult hawksbill sea turtles using skeleto+iso. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.983260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the eastern Pacific Ocean, hawksbill sea turtles (Eretmochelys imbricata) are adapted to use coastal habitats and ecosystems uncharacteristic of most other sea turtles. Once considered extirpated from this region, hawksbills had sought refuge in estuaries, nesting on muddy banks among the tangles of mangrove roots. This population is at high risk of bycatch during fishing efforts in the estuaries (blast fishing) and adjacent coastal rocky reefs (gillnets), and is further impacted by habitat degradation from coastal development and climate change. The conservation and population recovery of hawksbills in this region is highly dependent on management actions (e.g., nest relocation, habitat protection, bycatch mitigation), and a better understanding of how hawksbills use and move between distinct habitats will help prioritize conservation efforts. To identify multi-year habitat use and movement patterns, we used stable carbon (δ13C) and nitrogen (δ15N) isotope analysis of skin and bone growth layers to recreate movements between two isotopically distinct habitats, a nearshore rocky reef and a mangrove estuary, the latter distinguishable by low δ13C and δ15N values characteristic of a mangrove-based foodweb. We applied skeletochronology with sequential δ13C and δ15N analysis of annual growth layers, “skeleto+iso,” to a dataset of 70 hawksbill humeri collected from coastal El Salvador. The results revealed at least two unique habitat-use patterns. All turtles, regardless of stranding location, spent time outside of the mangrove estuaries during their early juvenile years (< 35 cm curved carapace length, CCL, age 0–5), showing that an oceanic juvenile stage is likely for this population. Juveniles ca. > 35 cm then began to recruit to nearshore areas, but showed divergent habitat-use as some of turtles occupied the coastal rocky reefs, while others settled into the mangrove estuaries. For turtles recruiting to the estuaries, settlement age and size ranged from 3 to 13 years and 35–65 cm CCL. For the adult turtles, age-at-sexual-maturity ranged from 16 to 26 years, and the maximum reproductive longevity observed was 33 years. The skeleto+iso also showed that adult hawksbills have long-term habitat fidelity, and the results demonstrate the importance of both mangrove estuary and nearshore rocky reefs to the conservation of hawksbills in the eastern Pacific.
Collapse
|