1
|
Morman KE, Buckley HL, Higgins CM, Tosi M, Dunfield KE, Day NJ. Simulated fire and plant-soil feedback effects on mycorrhizal fungi and invasive plants. iScience 2024; 27:111193. [PMID: 39555402 PMCID: PMC11564915 DOI: 10.1016/j.isci.2024.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/24/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Climate change intensifies fires, raising questions about their impacts on plant invasions via changes in soil biota and plant-soil feedback (plants alter soil conditions, changing plant growth and vice-versa). We explored effects of plant-soil feedback and simulated fire (heat) on mutualistic arbuscular mycorrhizal (AM) fungal communities and invasive plant growth. Soils were collected from a dominant native grass (Chionochloa macra) and two invasive hawkweeds (Hieracium lepidulum, Pilosella officinarum) in a New Zealand grassland and then heated. In our experiment, both hawkweeds exhibited greater biomass in Pilosella soils, which also had the highest AM fungal richness. Heat had little effect on plant biomass or AM fungal community composition and richness. Hawkweeds altered AM fungal communities relative to the dominant native grass, and moderate soil heating increased Hieracium growth. Hieracium plants also grew better in Pilosella soils, suggesting the potential for soil-mediated invasional meltdown whereby one invasive species facilitates invasion by another.
Collapse
Affiliation(s)
- Kendall E. Morman
- School of Science, Auckland University of Technology, Auckland, New Zealand
- Ngāti Kuri, Kaitaia, New Zealand
| | - Hannah L. Buckley
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Colleen M. Higgins
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Micaela Tosi
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Kari E. Dunfield
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Nicola J. Day
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
2
|
Ding L, Chen H, Wang M, Wang P. Shrub expansion raises both aboveground and underground multifunctionality on a subtropical plateau grassland: coupling multitrophic community assembly to multifunctionality and functional trade-off. Front Microbiol 2024; 14:1339125. [PMID: 38274762 PMCID: PMC10808678 DOI: 10.3389/fmicb.2023.1339125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Shrubs have expanded into grasslands globally. However, the relative importance of aboveground and underground diversity and the relative importance of underground community assembly and diversity in shaping multifunctionality and functional trade-offs over shrub expansion remains unknown. Methods In this study, aboveground and underground multitrophic communities (abundant and rare archaea, bacteria, fungi, nematodes, and protists) and 208 aboveground and underground ecosystem properties or indicators were measured at three stages (Grass, Mosaic, Shrub) of shrub expansion on the Guizhou subtropical plateau grassland to study multifunctionality and functional trade-offs. Results The results showed that shrub expansion significantly enhanced aboveground, underground, and entire ecosystem multifunctionality. The functional trade-off intensities of the aboveground, underground, and entire ecosystems showed significant V-shaped changes with shrub expansion. Shrub expansion improved plant species richness and changed the assembly process and species richness of soil abundant and rare subcommunities. Plant species diversity had a greater impact on multifunctionality than soil microbial diversity by more than 16%. The effect of plant species diversity on functional trade-offs was only one-fifth of the effect of soil microbial diversity. The soil microbial species richness did not affect multifunctionality, however, the assembly process of soil microbial communities did. Rather than the assembly process of soil microbial communities, the soil microbial species richness affected functional trade-offs. Discussion Our study is the first to couple multitrophic community assemblies to multifunctionality and functional trade-offs. Our results would boost the understanding of the role of aboveground and underground diversity in multifunctionality and functional trade-offs.
Collapse
Affiliation(s)
- Leilei Ding
- Guizhou Institution of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Hong Chen
- Guizhou Songbaishan Reservoir Management Office, Guiyang, Guizhou, China
| | - Mengya Wang
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Puchang Wang
- School of Life Science, Guizhou Normal University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Castillo-Garcia M, Alados CL, Ramos J, Pueyo Y. Effectiveness of two mechanical shrub removal treatments for restoring sub-alpine grasslands colonized by re-sprouting woody vegetation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119450. [PMID: 37897902 DOI: 10.1016/j.jenvman.2023.119450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/21/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
The extent of European sub-alpine grasslands and their associated ecosystem services are decreasing due to woody plant encroachment. Commonly used methods of woody vegetation suppression like prescribed burning or clearcutting usually cause little damage to belowground bud-banks, offering poor results against re-sprouting shrubs. In this study, we assessed the effects on vegetation and soil properties of two mechanical shrub removal methods for restoring sub-alpine grasslands colonized by the re-sprouting shrub Rosa sp. in the Central Spanish Pyrenees: a commonly used method based on clearcutting (Clearcutting); and a non-previously assessed method based on pulling shrubs off the soil to remove both the aerial and belowground bud-banks (Uprooting). We set a parallel experiment to test whether or not clustering Rosa sp. debris generated in Uprooting (which held many mature fruits) at certain grassland locations may promote colonization of new grassland spots by Rosa sp. seedlings. By the end of the study period, vegetation composition and structure was more similar to the reference grassland in Uprooting than in Clearcutting. Indeed, woody vegetation cover was 71 % smaller in Uprooting than in Clearcutting three years after shrub removal. Nevertheless, by the end of the study period, chemical and microbiological soil properties were slightly more similar to the reference grassland in Clearcutting than in Uprooting. Additionally, the results of our study showed that clustering unusually high number of mature fruits of Rosa sp. at certain grassland locations increased shrub seedling colonization in comparison with other areas of the reference grassland, indicating that operational planning needs to take into account shrub phenology. In conclusion, our work showed that Uprooting may be a useful tool for land managers aiming to restore sub-alpine grasslands colonized by re-sprouting shrubs, though it is advisable using it for scatter shrub patches to prevent significant medium to long-term soil disturbance at landscape scale.
Collapse
Affiliation(s)
- Miguel Castillo-Garcia
- Instituto Pirenaico de Ecología (CSIC), Avenida de Montañana, 1005, P.O Box 13034, 50059, Zaragoza, Spain; Oficina Comarcal Agraria de Calatayud (Gobierno de Aragón), Calle Amparados, 2, 50300, Calatayud, Spain.
| | - Concepción L Alados
- Instituto Pirenaico de Ecología (CSIC), Avenida de Montañana, 1005, P.O Box 13034, 50059, Zaragoza, Spain
| | - Javier Ramos
- Estación Experimental de Aula Dei (CSIC). Avenida de Montañana, 1005. 50059, Zaragoza, Spain
| | - Yolanda Pueyo
- Instituto Pirenaico de Ecología (CSIC), Avenida de Montañana, 1005, P.O Box 13034, 50059, Zaragoza, Spain.
| |
Collapse
|
4
|
Wipulasena AYAP, Davison J, Helm A, Kasari L, Moora M, Prangel E, Reitalu T, Vahter T, Vasar M, Zobel M. Soil community composition in dynamic stages of semi-natural calcareous grassland. PLoS One 2023; 18:e0292425. [PMID: 37847721 PMCID: PMC10581465 DOI: 10.1371/journal.pone.0292425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
European dry thin-soil calcareous grasslands (alvars) are species-rich semi-natural habitats. Cessation of traditional management, such as mowing and grazing, leads to shrub and tree encroachment and the local extinction of characteristic alvar species. While soil microbes are known to play a critical role in driving vegetation and ecosystem dynamics, more information is needed about their composition and function in grasslands of different dynamic stages. Here we assess the composition of soil fungal, prokaryotic, and plant communities using soil environmental DNA from restored alvar grasslands in Estonia. The study areas included grasslands that had experienced different degrees of woody encroachment prior to restoration (woody plant removal and grazing), as well as unmanaged open grasslands. We found that, in general, different taxonomic groups exhibited correlated patterns of between-community variation. Previous forest sites, which had prior to restoration experienced a high degree of woody encroachment by ectomycorrhizal Scots pine, were compositionally most distinct from managed open grasslands, which had little woody vegetation even prior to restoration. The functional structure of plant and fungal communities varied in ways that were consistent with the representation of mycorrhizal types in the ecosystems prior to restoration. Compositional differences between managed and unmanaged open grasslands reflecting the implementation of grazing without further management interventions were clearer among fungal, and to an extent prokaryotic, communities than among plant communities. While previous studies have shown that during woody encroachment of alvar grassland, plant communities change first and fungal communities follow, our DNA-based results suggest that microbial communities reacted faster than plant communities during the restoration of grazing management in alvar grassland. We conclude that while the plant community responds faster to cessation of management, the fungal community responds faster to restoration of management. This may indicate hysteresis, where the eventual pathway back to the original state (grazed ecosystem) differs from the pathway taken towards the alternative state (abandoned semi-natural grassland ecosystem).
Collapse
Affiliation(s)
- A. Y. Ayesh Piyara Wipulasena
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - John Davison
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Aveliina Helm
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Liis Kasari
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Mari Moora
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Elisabeth Prangel
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Triin Reitalu
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Tanel Vahter
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Martti Vasar
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
Tosi M, Ogilvie CM, Spagnoletti FN, Fournier S, Martin RC, Dunfield KE. Cover Crops Modulate the Response of Arbuscular Mycorrhizal Fungi to Water Supply: A Field Study in Corn. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12051015. [PMID: 36903877 PMCID: PMC10005079 DOI: 10.3390/plants12051015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 05/14/2023]
Abstract
Cover crops (CCs) were found to improve soil health by increasing plant diversity and ground cover. They may also improve water supply for cash crops by reducing evaporation and increasing soil water storage capacity. However, their influence on plant-associated microbial communities, including symbiotic arbuscular mycorrhizal fungi (AMF), is less well understood. In a corn field trial, we studied the response of AMF to a four-species winter CC, relative to a no-CC control, as well as to two contrasting water supply levels (i.e., drought and irrigated). We measured AMF colonization of corn roots and used Illumina MiSeq sequencing to study the composition and diversity of soil AMF communities at two depths (i.e., 0-10 and 10-20 cm). In this trial, AMF colonization was high (61-97%), and soil AMF communities were represented by 249 amplicon sequence variants (ASVs) belonging to 5 genera and 33 virtual taxa. Glomus, followed by Claroideoglomus and Diversispora (class Glomeromycetes), were the dominant genera. Our results showed interacting effects between CC treatments and water supply levels for most of the measured variables. The percentage of AMF colonization, arbuscules, and vesicles tended to be lower in irrigated than drought sites, with significant differences detected only under no-CC. Similarly, soil AMF phylogenetic composition was affected by water supply only in the no-CC treatment. Changes in the abundance of individual virtual taxa also showed strong interacting effects between CCs, irrigation, and sometimes soil depth, although CC effects were clearer than irrigation effects. An exception to these interactions was soil AMF evenness, which was higher in CC than no-CC, and higher under drought than irrigation. Soil AMF richness was not affected by the applied treatments. Our results suggest that CCs can affect the structure of soil AMF communities and modulate their response to water availability levels, although soil heterogeneity could influence the final outcome.
Collapse
Affiliation(s)
- Micaela Tosi
- School of Environmental Sciences, University of Guelph, 50 Stone Rd. E, Guelph, ON N1G 2W1, Canada
| | - Cameron M. Ogilvie
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. E, Guelph, ON N1G 2W1, Canada
| | - Federico N. Spagnoletti
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Consejo Nacional de Investigaciones Científicas (CONICET), Avda. San Martín 4453, Buenos Aires C1417DSE, Argentina
- Cátedra de Microbiología, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - Sarah Fournier
- School of Environmental Sciences, University of Guelph, 50 Stone Rd. E, Guelph, ON N1G 2W1, Canada
| | - Ralph C. Martin
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. E, Guelph, ON N1G 2W1, Canada
| | - Kari E. Dunfield
- School of Environmental Sciences, University of Guelph, 50 Stone Rd. E, Guelph, ON N1G 2W1, Canada
- Correspondence:
| |
Collapse
|
6
|
Vasar M, Davison J, Moora M, Sepp SK, Anslan S, Al-Quraishy S, Bahram M, Bueno CG, Cantero JJ, Fabiano EC, Decocq G, Drenkhan R, Fraser L, Oja J, Garibay-Orijel R, Hiiesalu I, Koorem K, Mucina L, Öpik M, Põlme S, Pärtel M, Phosri C, Semchenko M, Vahter T, Doležal J, Palacios AMV, Tedersoo L, Zobel M. Metabarcoding of soil environmental DNA to estimate plant diversity globally. FRONTIERS IN PLANT SCIENCE 2023; 14:1106617. [PMID: 37143888 PMCID: PMC10151745 DOI: 10.3389/fpls.2023.1106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
Introduction Traditional approaches to collecting large-scale biodiversity data pose huge logistical and technical challenges. We aimed to assess how a comparatively simple method based on sequencing environmental DNA (eDNA) characterises global variation in plant diversity and community composition compared with data derived from traditional plant inventory methods. Methods We sequenced a short fragment (P6 loop) of the chloroplast trnL intron from from 325 globally distributed soil samples and compared estimates of diversity and composition with those derived from traditional sources based on empirical (GBIF) or extrapolated plant distribution and diversity data. Results Large-scale plant diversity and community composition patterns revealed by sequencing eDNA were broadly in accordance with those derived from traditional sources. The success of the eDNA taxonomy assignment, and the overlap of taxon lists between eDNA and GBIF, was greatest at moderate to high latitudes of the northern hemisphere. On average, around half (mean: 51.5% SD 17.6) of local GBIF records were represented in eDNA databases at the species level, depending on the geographic region. Discussion eDNA trnL gene sequencing data accurately represent global patterns in plant diversity and composition and thus can provide a basis for large-scale vegetation studies. Important experimental considerations for plant eDNA studies include using a sampling volume and design to maximise the number of taxa detected and optimising the sequencing depth. However, increasing the coverage of reference sequence databases would yield the most significant improvements in the accuracy of taxonomic assignments made using the P6 loop of the trnL region.
Collapse
Affiliation(s)
- Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- *Correspondence: Martti Vasar,
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Siim-Kaarel Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - C. Guillermo Bueno
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Juan José Cantero
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, Córdoba, Argentina
- Departamento de Biología Agrícola, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | | | - Guillaume Decocq
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR CNRS 7058), Jules Verne, University of Picardie, Amiens, France
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Lauchlan Fraser
- Department of Natural Resource Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Jane Oja
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Ladislav Mucina
- Iluka Chair in Vegetation Science and Biogeography, Harry Butler Institute, Murdoch University, Perth, WA, Australia
- Department of Geography & Environmental Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Sergei Põlme
- Center of Mycology and Microbiology, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Cherdchai Phosri
- Department of Biology, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Tanel Vahter
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Jiři Doležal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Aida M. Vasco Palacios
- Grupo de Microbiología Ambiental y Grupo BioMicro, Escuela de Microbiología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Leho Tedersoo
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Center of Mycology and Microbiology, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, University of Tartu, Tartu, Estonia
| |
Collapse
|
7
|
Tervonen K, Oldén A, Taskinen S, Halme P. The effects of grazing history, soil properties and stand structure on the communities of saprotrophic fungi in wood-pastures. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
González Fradejas G, García de León D, Vasar M, Koorem K, Zobel M, Öpik M, Moora M, Rey Benayas JM. Hedgerows increase the diversity and modify the composition of arbuscular mycorrhizal fungi in Mediterranean agricultural landscapes. MYCORRHIZA 2022; 32:397-407. [PMID: 36087125 PMCID: PMC9561024 DOI: 10.1007/s00572-022-01090-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Sustainable agriculture is essential to address global challenges such as climate change and biodiversity loss. Hedgerows enhance aboveground biodiversity and provide ecosystem services, but little is known about their impact on soil biota. Arbuscular mycorrhizal (AM) fungi are one of the key components of belowground biodiversity. We compared the diversity and composition of AM fungal communities at four farmland sites located in Central Spain, where 132 soil samples in total were collected to assess soil physical and chemical properties and the AM fungal communities. We compared the richness (number of AM fungal taxa), taxonomic, functional, and phylogenetic diversity, and structure of the AM fungal communities across three farmland habitat types, namely hedgerows, woody crops (olive groves and vineyard), and herbaceous crops (barley, sunflower, and wheat). Our results showed positive effects of hedgerows on most diversity metrics. Almost 60% of the AM fungal taxa were shared among the three farmland habitat types. Hedgerows increased AM fungal taxonomic richness (31%) and alpha diversity (25%), and especially so compared to herbaceous crops (45% and 28%, respectively). Hedgerows harbored elevated proportions of AM fungi with non-ruderal life-history strategies. AM fungal communities were more similar between hedgerows and woody crops than between hedgerows and adjacent herbaceous crops, possibly because of differences in tillage and fertilization. Unexpectedly, hedgerows reduced phylogenetic diversity, which might be related to more selective associations of AM fungi with woody plants than with herbaceous crops. Overall, the results suggest that planting hedgerows contributes to maintain belowground diversity. Thus, European farmers should plant more hedgerows to attain the goals of the EU Biodiversity Strategy for 2030.
Collapse
Affiliation(s)
- Guillermo González Fradejas
- Grupo de Ecología y Restauración Forestal (FORECO), Departamento de Ciencias de La Vida, Universidad de Alcalá, Alcalá de Henares, Spain
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - David García de León
- Grupo de Ecología y Restauración Forestal (FORECO), Departamento de Ciencias de La Vida, Universidad de Alcalá, Alcalá de Henares, Spain.
| | - Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - José María Rey Benayas
- Grupo de Ecología y Restauración Forestal (FORECO), Departamento de Ciencias de La Vida, Universidad de Alcalá, Alcalá de Henares, Spain
- Fundación Internacional para la Restauración de Ecosistemas, Madrid, Spain
| |
Collapse
|
9
|
Fernández-Guisuraga JM, Fernández-García V, Tárrega R, Marcos E, Valbuena L, Pinto R, Monte P, Beltrán D, Huerta S, Calvo L. Transhumant Sheep Grazing Enhances Ecosystem Multifunctionality in Productive Mountain Grasslands: A Case Study in the Cantabrian Mountains. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.861611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding the effects of traditional livestock grazing abandonment on the ability of mountain grasslands to sustain multiple ecosystem functions (ecosystem multifunctionality; EMF) is crucial for implementing policies that promote grasslands conservation and the delivery of multiple ecosystem services. In this study, we evaluated the effect of short- and long-term transhumant sheep abandonment on EMF through a grazing exclusion experiment in a grassland of the Cantabrian Mountains range (NW Spain), where transhumant sheep flocks graze in summer. We considered four key ecosystem functions, derived from vegetation and soil functional indicators measured in the field: (A) biodiversity function, evaluated from total plant species evenness, diversity and richness indicators; (B) forage production function, evaluated from cover and richness of perennial and annual herbaceous species indicators; (C) carbon sequestration function, evaluated from woody species cover and soil organic carbon indicators; and (D) soil fertility function, evaluated from NH4+-N, NO3–-N, P and K content in the soil. The EMF index was calculated by integrating the four standardized ecosystem functions through an averaging approach. Based on linear mixed modeling we found that grazing exclusion induced significant shifts in the considered individual ecosystem functions and also on EMF. Long-term livestock exclusion significantly hindered biodiversity and forage production functions, but enhanced the carbon sequestration function. Conversely, the soil fertility function was negatively affected by both short- and long-term grazing exclusion. Altogether, grazing exclusion significantly decreased overall EMF, especially in long-term livestock exclusion areas, while the decline in EMF in short-term exclusions with respect to grazed areas was marginally significant. The results of this study support the sustainability of traditional transhumance livestock grazing for promoting the conservation of grasslands and their ecosystem function in mountain regions.
Collapse
|
10
|
Ariza M, Fouks B, Mauvisseau Q, Halvorsen R, Alsos IG, de Boer H. Plant biodiversity assessment through soil
eDNA
reflects temporal and local diversity. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- María Ariza
- Universitetet i Oslo, Naturhistorisk Museum Oslo Norway
| | - Bertrand Fouks
- Westfälische Wilhelms‐Universität Institute for Evolution and Biodiversity Molecular Evolution and Bioinformatics. Hüfferstraße 1 Münster Germany
| | | | | | - Inger Greve Alsos
- The Arctic University Museum of Norway UiT ‐ The Arctic University of Norway Norway
| | - Hugo de Boer
- Universitetet i Oslo, Naturhistorisk Museum Oslo Norway
| |
Collapse
|