1
|
Tao Y, Li Y, Fu Y, She S, Wang X, Hou L, Chen C, Chen L. Differences in Carbon and Nitrogen Cycling Strategies and Regional Variability in Biological Soil Crust Types. Int J Mol Sci 2025; 26:3989. [PMID: 40362228 PMCID: PMC12071523 DOI: 10.3390/ijms26093989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Biological soil crusts (BSCs) play a pivotal role in maintaining ecosystem stability and soil fertility in arid and semi-arid regions. However, the biogeographical differences in soil functional composition between cyanobacterial BSCs (C-BSCs) and moss BSCs (M-BSCs), particularly how environmental changes affect nutrient cycling strategies and microbial community functions, remain poorly understood. In this study, we investigated BSCs across aridity gradients (semi-humid, semi-arid, and arid regions) in China, focusing on carbon and nitrogen cycling pathways, enzyme activities, and nutrient acquisition strategies. It was found that aridity and BSC type had significant effects on the functional characteristics of microorganisms. This was demonstrated by significant differences in various soil microbial activities including enzyme activities and carbon and nitrogen nutrient cycling. With increasing aridity, C-BSCs exhibited reduced carbon cycling activity but enhanced nitrogen cycling processes, whereas M-BSCs displayed diminished activity in both carbon and nitrogen cycling. These divergent strategies were linked to soil properties such as pH and organic carbon content, with C-BSCs adapting through nitrogen-related processes (e.g., nifH, amoA) and M-BSCs relying on C fixation and degradation. These findings provide novel insights into the functional gene diversity of BSCs across different regions, offering valuable references for ecological restoration in arid areas. Specifically, our study highlights the potential of BSC inoculation for carbon and nitrogen enrichment in arid regions, with implications for climate-resilient restoration practices.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chaoqi Chen
- Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, China; (Y.T.)
| | - Lanzhou Chen
- Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, China; (Y.T.)
| |
Collapse
|
2
|
Wang Y, Xiao B, Wang W, Kidron GJ. Interactions between biocrusts and herbaceous communities are divergent in dry and wet semiarid ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173759. [PMID: 38844240 DOI: 10.1016/j.scitotenv.2024.173759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Biocrusts are a prevalent form of living cover in worldwide drylands, and their presence are intimately associated with herbaceous community, forming a spatially mosaic distribution pattern in dryland ecosystems. The role of biocrusts as modulators of herbaceous community assembly is extensively studied, whereas, less is known whether their interactions are permanent or changeable with various environmental conditions. This study conducted a field survey of herbaceous community accompanied by three types of biocrusts (cyanobacterial, cyanobacterial-moss mixed, and moss crusts) in two contrasting (dry and wet) semiarid climate regions in the Chinese Loess Plateau, to explore whether or not climatic aridity gradient affects the interactions between biocrusts and herbaceous community. Our results showed that in dry semiarid climate, the biomass, species richness, and diversity of herbaceous community from biocrust plots were 89 %, 179 %, and 52 % higher than that from the uncrusted plots, respectively, while in wet semiarid climate, those herbaceous community indices from biocrust plots were 68 %, 43 %, and 23 % lower than that from the uncrusted plots, respectively. The impacts of biocrusts on herbaceous community were highly dependent on the types and coverage of biocrusts. Regardless of aridity gradient, the richness and diversity of herbaceous community were the lowest in the moss-covered plots, followed by the cyanobacteria-covered plots and the plots with a mixed cyanobacteria and moss population. Along with increasing biocrust coverage, the species richness and diversity of herbaceous plants initially increased and then decreased in dry semiarid climate, while in wet semiarid climate they decreased linearly with biocrust coverage. Structural equation modeling revealed that the factors of biocrust types and coverage affected herbaceous community indirectly through soil properties in dry semiarid climate, whereas in wet semiarid climate they directly affected herbaceous community through biotic interactions. Together, our findings indicated that cyanobacterial and moss biocrusts facilitate the development of herbaceous community in dry semiarid climate by increasing soil stability and nutrient levels, but in wet semiarid climate they restrict herbaceous plant growth through competing niche space. These results highlight the divergent relationships between biocrusts and herbaceous community across aridity gradient in dryland ecosystems, and this knowledge may be critically important in light of the projected global climate change which is going to change the aridity of global drylands.
Collapse
Affiliation(s)
- Yanfeng Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Xiao
- Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing 100193, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wanfu Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Giora J Kidron
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Givat Ram Campus, Jerusalem 91904, Israel
| |
Collapse
|
3
|
Ren H, Tao L, Ren J, Ren X. Chlorophyll and growth performance of biological sand-fixing materials inoculated on sandy desert surface. PHOTOSYNTHETICA 2024; 62:213-220. [PMID: 39651414 PMCID: PMC11613831 DOI: 10.32615/ps.2024.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/06/2024] [Indexed: 12/11/2024]
Abstract
Desert biocrusts play an important role in the control of desertification and artificial inoculation can promote the formation and development of biocrusts. Physiological and growth responses of biocrusts inoculated on desert surfaces were investigated to assess the effect of mixture ratio, inoculation times, and water supply under laboratory conditions. The application of biological sand-fixing material prepared by cultivated algae crust and polymeric composites in a 1:1 ratio accelerated the most accumulation of chlorophyll a in 0.55 mg kg-1, thickness in 3.06 mm, and fresh mass in 0.69 g cm-1, was the most beneficial to formation and development of artificial biocrust. The water supply and cultivation time always significantly promoted the growth and accumulation of chlorophyll a and biomass under artificial cultivation and inoculation treatments. Artificial inoculation of biological sand-fixing material can lead to the formation of desert biocrust, which provides an engineering application method for desertification control.
Collapse
Affiliation(s)
- H.R. Ren
- School of Environmental and Municipal Engineering. Lanzhou Jiaotong University, 730070 Lanzhou, China
- Gansu Hanxing Environmental Protection Co., Ltd., 730070 Lanzhou, China
| | - L. Tao
- School of Environmental and Municipal Engineering. Lanzhou Jiaotong University, 730070 Lanzhou, China
- Gansu Hanxing Environmental Protection Co., Ltd., 730070 Lanzhou, China
| | - J. Ren
- School of Environmental and Municipal Engineering. Lanzhou Jiaotong University, 730070 Lanzhou, China
- Gansu Hanxing Environmental Protection Co., Ltd., 730070 Lanzhou, China
| | - X.C. Ren
- School of Environmental and Municipal Engineering. Lanzhou Jiaotong University, 730070 Lanzhou, China
| |
Collapse
|
4
|
Yang Z, Yuan Y, Guo J, Li J, Li J, Yu H, Zeng W, Huang Y, Yin L, Li F. Responses of Soil C, N, P and Enzyme Activities to Biological Soil Crusts in China: A Meta-Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1525. [PMID: 38891333 PMCID: PMC11174547 DOI: 10.3390/plants13111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Biological soil crusts (BSCs) are often referred to as the "living skin" of arid regions worldwide. Yet, the combined impact of BSCs on soil carbon (C), nitrogen (N), phosphorus (P), and enzyme activities remains not fully understood. This study identified, screened and reviewed 71 out of 2856 literature sources to assess the responses of soil C, N, P and enzyme activity to BSCs through a meta-analysis. The results indicated that BSC presence significantly increased soil C, N, P and soil enzyme activity, and this increasing effect was significantly influenced by the types of BSCs. Results from the overall effect showed that soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), and available phosphorus (AP) increased by 107.88%, 84.52%, 45.43%, 27.46%, and 54.71%, respectively, and four soil enzyme activities (Alkaline Phosphatase, Cellulase, Sucrase, and Urease) increased by 93.65-229.27%. The highest increases in SOC, TN and AN content occurred in the soil covered with lichen crusts and moss crusts, and significant increases in Alkaline Phosphatase and Cellulase were observed in the soil covered with moss crusts and mixed crusts, suggesting that moss crusts can synergistically enhance soil C and N pool and enzyme activity. Additionally, variations in soil C, N, P content, and enzyme activity were observed under different environmental settings, with more pronounced improvements seen in coarse and medium-textured soils compared to fine-textured soils, particularly at a depth of 5 cm from the soil surface. BSCs in desert ecosystems showed more significant increases in SOC, TN, AN, and Alkaline Phosphatase compared to forest and grassland ecosystems. Specifically, BSCs at low altitude (≤500 m) with an annual average rainfall of 0-400 mm and an annual average temperature ≤ 10 °C were the most conducive to improving soil C, N, and P levels. Our results highlight the role of BSCs and their type in increasing soil C, N, P and enzyme activities, with these effects significantly impacted by soil texture, ecosystem type, and climatic conditions. The implications of these findings are crucial for soil enhancement, ecosystem revitalization, windbreak, and sand stabilization efforts in the drylands of China.
Collapse
Affiliation(s)
- Zhi Yang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Yong Yuan
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinjin Guo
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinxi Li
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianhua Li
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Hu Yu
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Wen Zeng
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Yinhong Huang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Liyun Yin
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Fulian Li
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
5
|
Drahorad S, Felix‐Henningsen P, Siemens J, Marschner B, Heinze S. Patterns of enzyme activities and nutrient availability within biocrusts under increasing aridity in Negev desert. Ecosphere 2022. [DOI: 10.1002/ecs2.4051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sylvie Drahorad
- Institute for Soil Science and Soil Conservation, Research Centre for Biosystems Landuse and Nutrition (IFZ), Justus‐Liebig‐University Giessen Giessen Germany
| | - Peter Felix‐Henningsen
- Institute for Soil Science and Soil Conservation, Research Centre for Biosystems Landuse and Nutrition (IFZ), Justus‐Liebig‐University Giessen Giessen Germany
| | - Jan Siemens
- Institute for Soil Science and Soil Conservation, Research Centre for Biosystems Landuse and Nutrition (IFZ), Justus‐Liebig‐University Giessen Giessen Germany
| | - Bernd Marschner
- Department of Geography, Soil Science and Soil Ecology Ruhr‐Universität Bochum Bochum Germany
| | - Stefanie Heinze
- Department of Geography, Soil Science and Soil Ecology Ruhr‐Universität Bochum Bochum Germany
| |
Collapse
|