1
|
McGrew A, Gantz C, Wills B, Baiser B, Record S, Zarnetske PL, Strecker AL. Abiotic variables drive different aspects of fish community trait variation and species richness across the continental United States. J Anim Ecol 2025. [PMID: 40108933 DOI: 10.1111/1365-2656.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/17/2025] [Indexed: 03/22/2025]
Abstract
Intraspecific trait variation (ITV) is an increasingly important aspect of biodiversity and can provide a more complete perspective on how abiotic and biotic processes affect individuals, species' niches and ultimately community-level structure than traditional uses of trait means. Body size serves as a proxy for a suite of traits that govern species' niches. Distributions of co-occurring species body sizes can inform niche overlap, relate to species richness and uncover mechanistic drivers of diversity. We leveraged individual-level body size (length) in freshwater fishes and environmental data from the National Ecological Observatory Network (NEON) for 17 lakes and streams in the contiguous United States to explore how abiotic and biotic factors influence fish species richness and trait distributions of body size. We calculated key abiotic (climate, productivity, land use) and biotic (phylogenetic diversity, trait diversity, community-level overlap of trait probability densities) variables for each site to test hypotheses about drivers of ITV in body size and fish diversity. Abiotic variables were consistently important in explaining variation in fish body size and species richness across sites. In particular, productivity (as chlorophyll) was a key variable in explaining variation in body size trait richness, evenness and divergence, as well as species richness. This study yields new insights into continental-scale patterns of freshwater fishes, possible only by leveraging the paired high frequency, in situ abiotic data and individual-level traits collected by NEON.
Collapse
Affiliation(s)
- Alicia McGrew
- Institute for Watershed Studies, Western Washington University, Bellingham, Washington, USA
| | - Crysta Gantz
- Institute for Watershed Studies, Western Washington University, Bellingham, Washington, USA
- Department of Environmental Science and Management, Portland State University, Portland, Oregon, USA
| | - Brigid Wills
- Institute for Watershed Studies, Western Washington University, Bellingham, Washington, USA
| | - Benjamin Baiser
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Sydne Record
- Department of Wildlife, Fisheries, and Conservation Biology and Maine Agricultural and Forest Experiment Station, University of Maine, Orono, Maine, USA
| | - Phoebe L Zarnetske
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Angela L Strecker
- Institute for Watershed Studies, Western Washington University, Bellingham, Washington, USA
- Department of Environmental Sciences, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
3
|
Neyret M, Le Provost G, Boesing AL, Schneider FD, Baulechner D, Bergmann J, de Vries FT, Fiore-Donno AM, Geisen S, Goldmann K, Merges A, Saifutdinov RA, Simons NK, Tobias JA, Zaitsev AS, Gossner MM, Jung K, Kandeler E, Krauss J, Penone C, Schloter M, Schulz S, Staab M, Wolters V, Apostolakis A, Birkhofer K, Boch S, Boeddinghaus RS, Bolliger R, Bonkowski M, Buscot F, Dumack K, Fischer M, Gan HY, Heinze J, Hölzel N, John K, Klaus VH, Kleinebecker T, Marhan S, Müller J, Renner SC, Rillig MC, Schenk NV, Schöning I, Schrumpf M, Seibold S, Socher SA, Solly EF, Teuscher M, van Kleunen M, Wubet T, Manning P. A slow-fast trait continuum at the whole community level in relation to land-use intensification. Nat Commun 2024; 15:1251. [PMID: 38341437 PMCID: PMC10858939 DOI: 10.1038/s41467-024-45113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a 'slow-fast' axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that 'slow' and 'fast' strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.
Collapse
Affiliation(s)
- Margot Neyret
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany.
- Laboratoire d'Écologie Alpine, Université Grenoble Alpes - CNRS - Université Savoie Mont Blanc, Grenoble, France.
| | | | | | - Florian D Schneider
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
- ISOE - Institute for social-ecological research, Frankfurt am Main, Germany
| | - Dennis Baulechner
- Justus Liebig University, Department of Animal Ecology, Giessen, Germany
| | - Joana Bergmann
- Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Franciska T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Stefan Geisen
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | - Kezia Goldmann
- Helmholtz Centre for Environmental Research (UFZ), Soil Ecology Department, Halle/Saale, Germany
| | - Anna Merges
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - Ruslan A Saifutdinov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Nadja K Simons
- Ecological Networks, Technical University Darmstadt, Darmstadt, Germany
- Applied Biodiversity Sciences, University of Würzburg, Würzburg, Germany
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Andrey S Zaitsev
- Justus Liebig University, Department of Animal Ecology, Giessen, Germany
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- Senckenberg Museum for Natural History Görlitz, Görlitz, Germany
| | - Martin M Gossner
- Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Kirsten Jung
- Institut of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Ellen Kandeler
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| | - Jochen Krauss
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Caterina Penone
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Michael Schloter
- Helmholtz Zentrum Muenchen, Research Unit for Comparative Microbiome Analysis, Oberschleissheim, Germany
- Chair of Environmental Microbiology, Technical University of Munich, Freising, Germany
| | - Stefanie Schulz
- Helmholtz Zentrum Muenchen, Research Unit for Comparative Microbiome Analysis, Oberschleissheim, Germany
| | - Michael Staab
- Ecological Networks, Technical University Darmstadt, Darmstadt, Germany
| | - Volkmar Wolters
- Justus Liebig University, Department of Animal Ecology, Giessen, Germany
| | - Antonios Apostolakis
- Department of Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany
- Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Klaus Birkhofer
- Department of Ecology, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Steffen Boch
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Runa S Boeddinghaus
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
- Department Plant Production and Production Related Environmental Protection, Center for Agricultural Technology Augustenberg (LTZ), Karlsruhe, Germany
| | - Ralph Bolliger
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Köln, Germany
| | - François Buscot
- Helmholtz Centre for Environmental Research (UFZ), Soil Ecology Department, Halle/Saale, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena-, Leipzig, Germany
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Köln, Germany
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Huei Ying Gan
- Senckenberg Centre for Human Evolution and Palaeoenvironments Tübingen (SHEP), Tübingen, Germany
| | - Johannes Heinze
- Department of Biodiversity, Heinz Sielmann Foundation, Wustermark, Germany
| | - Norbert Hölzel
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Katharina John
- Justus Liebig University, Department of Animal Ecology, Giessen, Germany
| | - Valentin H Klaus
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
- Forage Production and Grassland Systems, Agroscope, Zürich, Switzerland
| | - Till Kleinebecker
- Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
- Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Giessen, Germany
| | - Sven Marhan
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| | - Jörg Müller
- Department of Nature Conservation, Heinz Sielmann Foundation, Wustermark, Germany
| | - Swen C Renner
- Ornithology, Natural History Museum Vienna, Vienna, Autria, Germany
| | | | - Noëlle V Schenk
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Ingo Schöning
- Department of Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Marion Schrumpf
- Department of Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Sebastian Seibold
- Technical University of Munich, TUM School of Life Sciences, Freising, Germany
- TUD Dresden University of Technology, Forest Zoology, Tharandt, Germany
| | - Stephanie A Socher
- Paris Lodron University Salzburg, Department Environment and Biodiversity, Salzburg, Austria
| | - Emily F Solly
- Helmholtz Centre for Environmental Research (UFZ), Computation Hydrosystems Department, Leipzig, Germany
| | - Miriam Teuscher
- University of Göttingen, Centre of Biodiversity and Sustainable Land Use, Göttingen, Germany
| | - Mark van Kleunen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Tesfaye Wubet
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena-, Leipzig, Germany
- Helmholtz Centre for Environmental Research (UFZ), Community Ecology Department, Halle/Saale, Germany
| | - Peter Manning
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany.
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
4
|
Dantzer B, Mabry KE, Bernhardt JR, Cox RM, Francis CD, Ghalambor CK, Hoke KL, Jha S, Ketterson E, Levis NA, McCain KM, Patricelli GL, Paull SH, Pinter-Wollman N, Safran RJ, Schwartz TS, Throop HL, Zaman L, Martin LB. Understanding Organisms Using Ecological Observatory Networks. Integr Org Biol 2023; 5:obad036. [PMID: 37867910 PMCID: PMC10586040 DOI: 10.1093/iob/obad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/07/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Human activities are rapidly changing ecosystems around the world. These changes have widespread implications for the preservation of biodiversity, agricultural productivity, prevalence of zoonotic diseases, and sociopolitical conflict. To understand and improve the predictive capacity for these and other biological phenomena, some scientists are now relying on observatory networks, which are often composed of systems of sensors, teams of field researchers, and databases of abiotic and biotic measurements across multiple temporal and spatial scales. One well-known example is NEON, the US-based National Ecological Observatory Network. Although NEON and similar networks have informed studies of population, community, and ecosystem ecology for years, they have been minimally used by organismal biologists. NEON provides organismal biologists, in particular those interested in NEON's focal taxa, with an unprecedented opportunity to study phenomena such as range expansions, disease epidemics, invasive species colonization, macrophysiology, and other biological processes that fundamentally involve organismal variation. Here, we use NEON as an exemplar of the promise of observatory networks for understanding the causes and consequences of morphological, behavioral, molecular, and physiological variation among individual organisms.
Collapse
Affiliation(s)
- B Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109,USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109,USA
| | - K E Mabry
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109,USA
- Department of Biology, New Mexico State University, Las Cruces, NM 88003,USA
| | - J R Bernhardt
- Department of Biology, New Mexico State University, Las Cruces, NM 88003,USA
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - R M Cox
- Department of Biology, University of Virginia, Charlottesville, VA 22940,USA
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407,USA
| | - C D Francis
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407,USA
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N‐7491 Trondheim, Norway
| | - C K Ghalambor
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N‐7491 Trondheim, Norway
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - K L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - S Jha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712,USA
| | - E Ketterson
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405,USA
| | - N A Levis
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405,USA
| | - K M McCain
- Global Health and Infectious Disease Research Center, College of Public Health, University of South Florida, Tampa, FL 33612,USA
| | - G L Patricelli
- Department of Evolution and Ecology, University of California, Davis, CA 95616,USA
| | - S H Paull
- Battelle, National Ecological Observatory Network, 1685 38th Street, Boulder, CO 80301, USA
| | - N Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - R J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder 80309,USA
| | - T S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - H L Throop
- School of Earth and Space Exploration and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - L Zaman
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109,USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA
| | - L B Martin
- Global Health and Infectious Disease Research Center and Center for Genomics, College of Public Health, University of South Florida, Tampa, FL 33612,USA
| |
Collapse
|