1
|
Tsai C, Connolly SR. Environmental Gradients Linked to Human Impacts, Not Species Richness, Drive Regional Variation in Community Stability in Coral Reef Fishes. Ecol Lett 2025; 28:e70001. [PMID: 40176304 PMCID: PMC11965780 DOI: 10.1111/ele.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 04/04/2025]
Abstract
The stabilising effect of biodiversity on aggregate community properties is well-established experimentally, but its importance in naturally assembled communities at larger scales requires considering its covariation with other biotic and abiotic factors. Here, we examine the diversity-stability relationship in a 27-year coral reef fish time series at 39 reefs spanning 10° latitude on Australia's Great Barrier Reef. We find that an apparent relationship between species richness and synchrony of population fluctuations is driven by these two variables' covariation with proximity to coastal influences. Additionally, coral cover volatility destabilises fish assemblages by increasing average population variability but not synchrony, an effect mediated by changes in the intensity of density regulation in the fish community. Our findings indicate that these two environmental factors, both of which are strongly influenced by anthropogenic activity, impact community stability more than diversity does, but by distinct pathways reflecting different underlying community-dynamic processes.
Collapse
Affiliation(s)
- Cheng‐Han Tsai
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsville MCQueenslandAustralia
| | - Sean R. Connolly
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Smithsonian Tropical Research InstitutePanamaRepublic of Panama
| |
Collapse
|
2
|
Yeager ME, Hughes AR. Functional trait analysis reveals the hidden stability of multitrophic communities. Ecology 2025; 106:e70001. [PMID: 39988920 PMCID: PMC11848122 DOI: 10.1002/ecy.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 02/25/2025]
Abstract
Although important for understanding how ecosystems will fare with increasing global change, the relationship between diversity and stability in multitrophic communities is still debated. Our best understanding comes from work within competitive guilds, where the relationship between stability and functional diversity is generally positive and also more direct and mechanistic than the relationship with species diversity. To expand our understanding, there is a need to examine empirically how functional trait identity relates to spatial and temporal stability within multitrophic communities relative to species identity. Here, we measured 13 functional traits of six coastal pond fish communities to examine temporal and spatial community stability through the lenses of functional trait diversity and species diversity. We found that solely considering species composition may underestimate stability. Additionally, we found spatial convergence and temporal divergence in species and trait variability, and we link this variation to processes of deterministic community assembly. Lastly, we found that correlations of species with key functional traits allow us to make inferences about how the trophic position of species relates to trait stability. Inferring community processes and making conservation decisions from species or trophic groups based on functional trait knowledge may be a viable strategy when resources are limited.
Collapse
Affiliation(s)
- Mallarie E. Yeager
- Marine and Environmental Science, Marine Science CenterNortheastern UniversityNahantMassachusettsUSA
- Present address:
Habitat Conservation Division, Alaska RegionNational Marine Fisheries Service, NOAAJuneauAlaskaUSA
| | - A. Randall Hughes
- Marine and Environmental Science, Marine Science CenterNortheastern UniversityNahantMassachusettsUSA
| |
Collapse
|
3
|
Srednick G, Swearer SE. Understanding diversity-synchrony-stability relationships in multitrophic communities. Nat Ecol Evol 2024; 8:1259-1269. [PMID: 38839850 DOI: 10.1038/s41559-024-02419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
Understanding how species loss impacts ecosystem stability is critical given contemporary declines in global biodiversity. Despite decades of research on biodiversity-stability relationships, most studies are performed within a trophic level, overlooking the multitrophic complexity structuring natural communities. Here, in a global analysis of diversity-synchrony-stability (DSS) studies (n = 420), we found that 74% were monotrophic and biased towards terrestrial plant communities, with 91% describing stabilizing effects of asynchrony. Multitrophic studies (26%) were representative of all biomes and showed that synchrony had mixed effects on stability. To explore potential mechanisms, we applied a multitrophic framework adapted from DSS theory to investigate DSS relationships in algae-herbivore assemblages across five long-term tropical and temperate marine system datasets. Both algal and herbivore species diversity reduced within-group synchrony in both systems but had different interactive effects on species synchrony between systems. Herbivore synchrony was positively and negatively influenced by algal diversity in tropical versus temperate systems, respectively, and algal synchrony was positively influenced by herbivore diversity in temperate systems. While herbivore synchrony reduced multitrophic stability in both systems, algal synchrony only reduced stability in tropical systems. These results highlight the complexity of DSS relationships at the multitrophic level and emphasize why more multitrophic assessments are needed to better understand how biodiversity influences community stability in nature.
Collapse
Affiliation(s)
- Griffin Srednick
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Stephen E Swearer
- Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Srednick G, Davis K, Edmunds PJ. Asynchrony in coral community structure contributes to reef-scale community stability. Sci Rep 2023; 13:2314. [PMID: 36759628 PMCID: PMC9911750 DOI: 10.1038/s41598-023-28482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Many aspects of global ecosystem degradation are well known, but the ecological implications of variation in these effects over scales of kilometers and years have not been widely considered. On tropical coral reefs, kilometer-scale variation in environmental conditions promotes a spatial mosaic of coral communities in which spatial insurance effects could enhance community stability. To evaluate whether these effects are important on coral reefs, we explored variation over 2006-2019 in coral community structure and environmental conditions in Moorea, French Polynesia. We studied coral community structure at a single site with fringing, back reef, and fore reef habitats, and used this system to explore associations among community asynchrony, asynchrony of environmental conditions, and community stability. Coral community structure varied asynchronously among habitats, and variation among habitats in the daily range in seawater temperature suggested it could be a factor contributing to the variation in coral community structure. Wave forced seawater flow connected the habitats and facilitated larval exchange among them, but this effect differed in strength among years, and accentuated periodic connectivity among habitats at 1-7 year intervals. At this site, connected habitats harboring taxonomically similar coral assemblages and exhibiting asynchronous population dynamics can provide insurance against extirpation, and may promote community stability. If these effects apply at larger spatial scale, then among-habitat community asynchrony is likely to play an important role in determining reef-wide coral community resilience.
Collapse
Affiliation(s)
- G Srednick
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia.
| | - K Davis
- Department of Civil & Environmental Engineering and Earth System Science, University of California, Irvine, USA
| | - P J Edmunds
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA, 91330-8303, USA
| |
Collapse
|
5
|
Srednick G, Cohen A, Diehl O, Tyler K, Swearer SE. Habitat attributes mediate herbivory and influence community development in algal metacommunities. Ecology 2023; 104:e3976. [PMID: 36691779 DOI: 10.1002/ecy.3976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 01/25/2023]
Abstract
Understanding the drivers and impacts of spatiotemporal variation in species abundance on community trajectories is key to understanding the factors contributing to ecosystem resilience. Temporal variation in species trajectories across patches can provide compensation for species loss and can influence successional patterns. However, little is known about the underlying mechanisms that lead to patterns of species or spatial compensation and how those patterns may be mediated by consumer-resource relationships. Here we describe an experiment testing whether habitat attributes (e.g., structural complexity and spatial heterogeneity) mediate the effects of herbivory on tropical marine macroalgal communities by reducing accessibility and detectability, respectively, leading to variable trajectories among algal species at community (within patch) and metacommunity (i.e., among patch) scales. Reduced accessibility (greater habitat complexity) decreased the effects of herbivory (i.e., depressed consumption rate, increased algal species richness), and both accessibility and detectability (spatial heterogeneity) influenced algal community structure. Moreover, decreased accessibility at the community scale and a mosaic of accessibility at the metacommunity scale led to variation in community assembly. We suggest that habitat attributes can be important influencers of consumer-resource interactions on coral reefs, which in turn can increase species diversity, promote species succession, and enhance stability in algal metacommunities.
Collapse
Affiliation(s)
- Griffin Srednick
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Alyssa Cohen
- Department of Biology, California State University, Northridge, Northridge, California, USA
| | - Olivia Diehl
- Department of Biology, California State University, Northridge, Northridge, California, USA
| | - Kaela Tyler
- Department of Biology, California State University, Northridge, Northridge, California, USA
| | - Stephen E Swearer
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Li S, Abdulkadir N, Schattenberg F, Nunes da Rocha U, Grimm V, Müller S, Liu Z. Stabilizing microbial communities by looped mass transfer. Proc Natl Acad Sci U S A 2022; 119:e2117814119. [PMID: 35446625 PMCID: PMC9169928 DOI: 10.1073/pnas.2117814119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 01/18/2023] Open
Abstract
Building and changing a microbiome at will and maintaining it over hundreds of generations has so far proven challenging. Despite best efforts, complex microbiomes appear to be susceptible to large stochastic fluctuations. Current capabilities to assemble and control stable complex microbiomes are limited. Here, we propose a looped mass transfer design that stabilizes microbiomes over long periods of time. Five local microbiomes were continuously grown in parallel for over 114 generations and connected by a loop to a regional pool. Mass transfer rates were altered and microbiome dynamics were monitored using quantitative high-throughput flow cytometry and taxonomic sequencing of whole communities and sorted subcommunities. Increased mass transfer rates reduced local and temporal variation in microbiome assembly, did not affect functions, and overcame stochasticity, with all microbiomes exhibiting high constancy and increasing resistance. Mass transfer synchronized the structures of the five local microbiomes and nestedness of certain cell types was eminent. Mass transfer increased cell number and thus decreased net growth rates μ′. Subsets of cells that did not show net growth μ′SCx were rescued by the regional pool R and thus remained part of the microbiome. The loop in mass transfer ensured the survival of cells that would otherwise go extinct, even if they did not grow in all local microbiomes or grew more slowly than the actual dilution rate D would allow. The rescue effect, known from metacommunity theory, was the main stabilizing mechanism leading to synchrony and survival of subcommunities, despite differences in cell physiological properties, including growth rates.
Collapse
Affiliation(s)
- Shuang Li
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
| | - Nafi'u Abdulkadir
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
| | - Florian Schattenberg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
| | - Volker Grimm
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
- Plant Ecology and Nature Conservation, University of Potsdam, 14476 Potsdam, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Beas-Luna R, Micheli F, Woodson CB, Carr M, Malone D, Torre J, Boch C, Caselle JE, Edwards M, Freiwald J, Hamilton SL, Hernandez A, Konar B, Kroeker KJ, Lorda J, Montaño-Moctezuma G, Torres-Moye G. Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes. GLOBAL CHANGE BIOLOGY 2020; 26:6457-6473. [PMID: 32902090 DOI: 10.1111/gcb.15273] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/06/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological responses to environmental change and predicting changes in the structure and functioning of whole ecosystems require large-scale, long-term studies, yet most studies trade spatial extent for temporal duration. We address this shortfall by integrating multiple long-term kelp forest monitoring datasets to evaluate biogeographic patterns and rates of change of key functional groups (FG) along the west coast of North America. Analysis of data from 469 sites spanning Alaska, USA, to Baja California, Mexico, and 373 species (assigned to 18 FG) reveals regional variation in responses to both long-term (2006-2016) change and a recent marine heatwave (2014-2016) associated with two atmospheric and oceanographic anomalies, the "Blob" and extreme El Niño Southern Oscillation (ENSO). Canopy-forming kelps appeared most sensitive to warming throughout their range. Other FGs varied in their responses among trophic levels, ecoregions, and in their sensitivity to heatwaves. Changes in community structure were most evident within the southern and northern California ecoregions, while communities in the center of the range were more resilient. We report a poleward shift in abundance of some key FGs. These results reveal major, ongoing region-wide changes in productive coastal marine ecosystems in response to large-scale climate variability, and the potential loss of foundation species. In particular, our results suggest that coastal communities that are dependent on kelp forests will be more impacted in the southern portion of the California Current region, highlighting the urgency of implementing adaptive strategies to sustain livelihoods and ensure food security. The results also highlight the value of multiregional integration and coordination of monitoring programs for improving our understanding of marine ecosystems, with the goal of informing policy and resource management in the future.
Collapse
Affiliation(s)
| | - Fiorenza Micheli
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA, USA
| | - C Brock Woodson
- College of Engineering, University of Georgia, Athens, GA, USA
| | - Mark Carr
- University of California, Santa Cruz, CA, USA
| | - Dan Malone
- University of California, Santa Cruz, CA, USA
| | - Jorge Torre
- Comunidad y Biodiversidad A.C., La Paz, Mexico
| | - Charles Boch
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Southwest Fisheries Science Center, NOAA, San Diego, CA, USA
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| | | | - Jan Freiwald
- University of California, Santa Cruz, CA, USA
- Reef Check California, Marina del Rey, CA, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, USA
| | | | | | | | - Julio Lorda
- Universidad Autónoma de Baja California, Ensenada, Mexico
- Tijuana River National Estuarine Research Reserve, Imperial Beach, CA, USA
| | | | | |
Collapse
|