1
|
Tao Y, Li Y, Fu Y, She S, Wang X, Hou L, Chen C, Chen L. Differences in Carbon and Nitrogen Cycling Strategies and Regional Variability in Biological Soil Crust Types. Int J Mol Sci 2025; 26:3989. [PMID: 40362228 PMCID: PMC12071523 DOI: 10.3390/ijms26093989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Biological soil crusts (BSCs) play a pivotal role in maintaining ecosystem stability and soil fertility in arid and semi-arid regions. However, the biogeographical differences in soil functional composition between cyanobacterial BSCs (C-BSCs) and moss BSCs (M-BSCs), particularly how environmental changes affect nutrient cycling strategies and microbial community functions, remain poorly understood. In this study, we investigated BSCs across aridity gradients (semi-humid, semi-arid, and arid regions) in China, focusing on carbon and nitrogen cycling pathways, enzyme activities, and nutrient acquisition strategies. It was found that aridity and BSC type had significant effects on the functional characteristics of microorganisms. This was demonstrated by significant differences in various soil microbial activities including enzyme activities and carbon and nitrogen nutrient cycling. With increasing aridity, C-BSCs exhibited reduced carbon cycling activity but enhanced nitrogen cycling processes, whereas M-BSCs displayed diminished activity in both carbon and nitrogen cycling. These divergent strategies were linked to soil properties such as pH and organic carbon content, with C-BSCs adapting through nitrogen-related processes (e.g., nifH, amoA) and M-BSCs relying on C fixation and degradation. These findings provide novel insights into the functional gene diversity of BSCs across different regions, offering valuable references for ecological restoration in arid areas. Specifically, our study highlights the potential of BSC inoculation for carbon and nitrogen enrichment in arid regions, with implications for climate-resilient restoration practices.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chaoqi Chen
- Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, China; (Y.T.)
| | - Lanzhou Chen
- Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, China; (Y.T.)
| |
Collapse
|
2
|
Liu Y, Ren J, Wang W, Shi Y, Gao Y, Zhan H, Luo Y, Jia R. Vascular plants and biocrusts ameliorate soil properties serving to increase the stability of the Great Wall of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175506. [PMID: 39151631 DOI: 10.1016/j.scitotenv.2024.175506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
The Great Wall, as a World Heritage Site, is constructed with rammed earth and is currently facing the threat of erosion from wind and rain. Vascular plants and biocrusts are the main coverings of the Great Wall, and their role in mitigating soil erosion has attracted increased amounts of attention; however, the understanding of their underlying mechanisms is limited. Here, we conducted an extensive survey of vascular plants, biocrusts, soil properties (soil organic and inorganic binding materials, aggregates, and texture), soil aggregate stability, and soil erodibility at the top of the Great Wall in four different defensive zones in Northwest China. Vascular plants covered 13.6 % to 63.9 % of the tops of the Great Wall, and their rich diversity was mainly derived from perennial herbs. Moss, lichen, and cyanobacterial crusts collectively covered 36.3 % to 67.8 % of the top of the Great Wall. Redundancy analysis and structural equation modeling revealed that the synergistic effects of vascular plants and biocrusts enhanced soil aggregation stability (including geometric mean diameter, GMD; water-stable macroaggregate content, R) by increasing the accumulation of soil organic carbon (SOC), amorphous iron oxide (Feo), and amorphous alumina (Alo) and promoting the formation of macroaggregates (ASD>0.25 mm) and microaggregates (ASD0.053-0.25 mm). Furthermore, soil erodibility was primarily influenced negatively by the synergistic promotion of SOC accumulation by vascular plants and biocrusts and positively by the reduction in soil sand (PSD>0.05 mm) content by biocrusts. Our work highlights the mechanisms and importance of vascular plants and biocrusts as natural covers for altering the intrinsic properties of soil for the protection of the Great Wall. These findings provide reliable theoretical support for the protection of the Great Wall from erosion by vascular plants and biocrusts and offer new insights for the conservation of global earthen sites and similar wall habitats.
Collapse
Affiliation(s)
- Yanping Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ren
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 73000, China
| | - Wanfu Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, Gansu 736200, China
| | - Yafei Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanhong Gao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongtao Zhan
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yayong Luo
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Rongliang Jia
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
3
|
Kut P, Garcia-Pichel F. Nimble vs. torpid responders to hydration pulse duration among soil microbes. Commun Biol 2024; 7:455. [PMID: 38609432 PMCID: PMC11015016 DOI: 10.1038/s42003-024-06141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Environmental parameters vary in time, and variability is inherent in soils, where microbial activity follows precipitation pulses. The expanded pulse-reserve paradigm (EPRP) contends that arid soil microorganisms have adaptively diversified in response to pulse regimes differing in frequency and duration. To test this, we incubate Chihuahuan Desert soil microbiomes under separate treatments in which 60 h of hydration was reached with pulses of different pulse duration (PD), punctuated by intervening periods of desiccation. Using 16S rRNA gene amplicon data, we measure treatment effects on microbiome net growth, growth efficiency, diversity, and species composition, tracking the fate of 370 phylotypes (23% of those detected). Consistent with predictions, microbial diversity is a direct, saturating function of PD. Increasingly larger shifts in community composition are detected with decreasing PD, as specialist phylotypes become more prominent. One in five phylotypes whose fate was tracked responds consistently to PD, some preferring short pulses (nimble responders; NIRs) and some longer pulses (torpid responders; TORs). For pulses shorter than a day, microbiome growth efficiency is an inverse function of PD, as predicted. We conclude that PD in pulsed soil environments constitutes a major driver of microbial community assembly and function, largely consistent with the EPRP predictions.
Collapse
Affiliation(s)
- Patrick Kut
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
4
|
Abstract
Biological soil crusts are thin, inconspicuous communities along the soil atmosphere ecotone that, until recently, were unrecognized by ecologists and even more so by microbiologists. In its broadest meaning, the term biological soil crust (or biocrust) encompasses a variety of communities that develop on soil surfaces and are powered by photosynthetic primary producers other than higher plants: cyanobacteria, microalgae, and cryptogams like lichens and mosses. Arid land biocrusts are the most studied, but biocrusts also exist in other settings where plant development is constrained. The minimal requirement is that light impinge directly on the soil; this is impeded by the accumulation of plant litter where plants abound. Since scientists started paying attention, much has been learned about their microbial communities, their composition, ecological extent, and biogeochemical roles, about how they alter the physical behavior of soils, and even how they inform an understanding of early life on land. This has opened new avenues for ecological restoration and agriculture.
Collapse
Affiliation(s)
- Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, Arizona, USA;
| |
Collapse
|
5
|
Brown RF, Collins SL. As above, not so below: Long-term dynamics of net primary production across a dryland transition zone. GLOBAL CHANGE BIOLOGY 2023; 29:3941-3953. [PMID: 37095743 DOI: 10.1111/gcb.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Drylands are key contributors to interannual variation in the terrestrial carbon sink, which has been attributed primarily to broad-scale climatic anomalies that disproportionately affect net primary production (NPP) in these ecosystems. Current knowledge around the patterns and controls of NPP is based largely on measurements of aboveground net primary production (ANPP), particularly in the context of altered precipitation regimes. Limited evidence suggests belowground net primary production (BNPP), a major input to the terrestrial carbon pool, may respond differently than ANPP to precipitation, as well as other drivers of environmental change, such as nitrogen deposition and fire. Yet long-term measurements of BNPP are rare, contributing to uncertainty in carbon cycle assessments. Here, we used 16 years of annual NPP measurements to investigate responses of ANPP and BNPP to several environmental change drivers across a grassland-shrubland transition zone in the northern Chihuahuan Desert. ANPP was positively correlated with annual precipitation across this landscape; however, this relationship was weaker within sites. BNPP, on the other hand, was weakly correlated with precipitation only in Chihuahuan Desert shrubland. Although NPP generally exhibited similar trends among sites, temporal correlations between ANPP and BNPP within sites were weak. We found chronic nitrogen enrichment stimulated ANPP, whereas a one-time prescribed burn reduced ANPP for nearly a decade. Surprisingly, BNPP was largely unaffected by these factors. Together, our results suggest that BNPP is driven by a different set of controls than ANPP. Furthermore, our findings imply belowground production cannot be inferred from aboveground measurements in dryland ecosystems. Improving understanding around the patterns and controls of dryland NPP at interannual to decadal scales is fundamentally important because of their measurable impact on the global carbon cycle. This study underscores the need for more long-term measurements of BNPP to improve assessments of the terrestrial carbon sink, particularly in the context of ongoing environmental change.
Collapse
Affiliation(s)
- Renée F Brown
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|