1
|
van Himbeeck R, Sowa JN, Tamim El Jarkass H, Wu W, Oude Vrielink J, Riksen JAG, Reinke A, van Sluijs L. Diversity-disease relationships in natural microscopic nematode communities. ROYAL SOCIETY OPEN SCIENCE 2025; 12:242088. [PMID: 40177104 PMCID: PMC11961254 DOI: 10.1098/rsos.242088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
Host diversity can affect parasite prevalence, a phenomenon widely studied in macroscopic organisms. However, data from microscopic communities are lacking, despite their essential role in ecosystem functioning and the unique experimental opportunities microscopic organisms offer. Here, we study diversity-disease effects in wild nematode communities by profiting from the molecular tools available in the well-studied model nematode Caenorhabditis elegans. Nanopore sequencing was used to characterize nematode community diversity and composition, whereas parasites were identified using nine distinct experimental assays based on fluorescent staining or fluorescent reporter strains. Our results indicate that biotic stress is abundant in wild nematode communities. Moreover, in two assays, diversity-disease relations were observed: microsporidia and immune system activation were more often detected in relatively species-poor communities. Other assays, targeting different parasites, were without diversity-disease relations. Together, this study provides the first demonstration of diversity-disease effects in microbial communities and establishes the use of nematode communities as model systems to study disease-diversity relationships.
Collapse
Affiliation(s)
- Robbert van Himbeeck
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Jessica N. Sowa
- Department of Biology, West Chester University of Pennsylvania, West Chester, PA, USA
| | | | - Wenjia Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Job Oude Vrielink
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Joost A. G. Riksen
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Aaron Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lisa van Sluijs
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| |
Collapse
|
2
|
Dang Y, Zhang P, Jiang P, Ke J, Xiao Y, Zhu Y, Liu M, Li M, Wu J, Liu J, Tian B, Liu X. Temperature-dependent variations in under-canopy herbaceous foliar diseases following shrub encroachment in grasslands. Nat Commun 2025; 16:1131. [PMID: 39875409 PMCID: PMC11775204 DOI: 10.1038/s41467-025-56439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Shrub encroachment into grasslands poses a global concern, impacting species biodiversity and ecosystem functioning. Yet, the effect of shrub encroachment on herbaceous diseases and the dependence of that effect on climatic factors remain ambiguous. This study spans over 4,000 km, examining significant variability in temperature and precipitation. Our findings reveal that herbaceous plant species richness diminishes the pathogen load of foliar fungal diseases of herbaceous plants in both shrub and grassland patches. Temperature emerges as the primary driver of variations in herbaceous biomass and pathogen load within herbaceous plant communities. Disparities in herbaceous biomass between shrub and grassland patches elucidate changes in pathogen load. In colder regions, shrub encroachment diminishes herbaceous biomass and pathogen load. Conversely, in warmer regions, shrubs either do not reduce or even amplify pathogen load. These discoveries underscore the necessity for adaptive management strategies tailored to specific shrub encroachment scenarios.
Collapse
Affiliation(s)
- Yilin Dang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- National Plateau Wetlands Research Center and Yunnan Key Laboratory of Plateau Wetland Conservation Restoration and Ecological Services, Southwest Forestry University, Kunming, China
| | - Peng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Peixi Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Junsheng Ke
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yao Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yingying Zhu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Mu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Minjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jihua Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| | - Bin Tian
- National Plateau Wetlands Research Center and Yunnan Key Laboratory of Plateau Wetland Conservation Restoration and Ecological Services, Southwest Forestry University, Kunming, China.
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Zhang P, Jiang H, Liu X. Diversity inhibits foliar fungal diseases in grasslands: Potential mechanisms and temperature dependence. Ecol Lett 2024; 27:e14435. [PMID: 38735857 DOI: 10.1111/ele.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
A long-standing debate exists among ecologists as to how diversity regulates infectious diseases (i.e., the nature of diversity-disease relationships); a dilution effect refers to when increasing host diversity inhibits infectious diseases (i.e., negative diversity-disease relationships). However, the generality, strength, and potential mechanisms underlying negative diversity-disease relationships in natural ecosystems remain unclear. To this end, we conducted a large-scale survey of 63 grassland sites across China to explore diversity-disease relationships. We found widespread negative diversity-disease relationships that were temperature-dependent; non-random diversity loss played a fundamental role in driving these patterns. Our study provides field evidence for the generality and temperature dependence of negative diversity-disease relationships in grasslands, becoming stronger in colder regions, while also highlighting the role of non-random diversity loss as a mechanism. These findings have important implications for community ecology, disease ecology, and epidemic control.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P. R. China
| | - Hongying Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P. R. China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
4
|
Johnson PTJ, Stewart Merrill TE, Dean AD, Fenton A. Diverging effects of host density and richness across biological scales drive diversity-disease outcomes. Nat Commun 2024; 15:1937. [PMID: 38431719 PMCID: PMC10908850 DOI: 10.1038/s41467-024-46091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Understanding how biodiversity affects pathogen transmission remains an unresolved question due to the challenges in testing potential mechanisms in natural systems and how these mechanisms vary across biological scales. By quantifying transmission of an entire guild of parasites (larval trematodes) within 902 amphibian host communities, we show that the community-level drivers of infection depend critically on biological scale. At the individual host scale, increases in host richness led to fewer parasites per host for all parasite taxa, with no effect of host or predator densities. At the host community scale, however, the inhibitory effects of richness were counteracted by associated increases in total host density, leading to no overall change in parasite densities. Mechanistically, we find that while average host competence declined with increasing host richness, total community competence remained stable due to additive assembly patterns. These results help reconcile disease-diversity debates by empirically disentangling the roles of alternative ecological drivers of parasite transmission and how such effects depend on biological scale.
Collapse
Affiliation(s)
- Pieter T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Tara E Stewart Merrill
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Coastal and Marine Laboratory, Florida State University, St. Teresa, FL, USA
| | - Andrew D Dean
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andy Fenton
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Chen L, Tan Z, Kong P, Zhou Y, Zhou L. Impact of vector richness on the risk of vector-borne disease: The role of vector competence. Ecol Evol 2024; 14:e11082. [PMID: 38435018 PMCID: PMC10905232 DOI: 10.1002/ece3.11082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024] Open
Abstract
A central goal of disease ecology is to identify the factors that drive the spread of infectious diseases. Changes in vector richness can have complex effects on disease risk, but little is known about the role of vector competence in the relationship between vector richness and disease risk. In this study, we firstly investigated the combined effects of vector competence, interspecific competition, and feeding interference on disease risk through a two-vector, one-host SIR-SI model, and obtained threshold conditions for the occurrence of dilution and amplification effects. Secondly, we extended the above model to the case of N vectors and assumed that all vectors were homogeneous to obtain analytic expressions for disease risk. It was found that in the two-vector model, disease risk declined more rapidly as interspecific competition of the high-competence vector increased. When vector richness increases, the positive effects of adding a high-competence vector species on disease transmission may outweigh the negative effects of feeding interference due to increased vector richness, making an amplification effect more likely to occur. While the addition of a highly competitive vector species may exacerbate the negative effects of feeding interference, making a dilution effect more likely to occur. In the N-vector model, the effect of increased vector richness on disease risk was fully driven by the strength of feeding interference and interspecific competition, and changes in vector competence only quantitatively but not qualitatively altered the vector richness-disease risk relationship. This work clarifies the role of vector competence in the relationship between vector richness and disease risk and provides a new perspective for studying the diversity-disease relationship. It also provides theoretical guidance for vector management and disease prevention strategies.
Collapse
Affiliation(s)
- Lifan Chen
- School of Arts and SciencesShanghai University of Medicine and Health SciencesShanghaiChina
| | - Zhiying Tan
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Ping Kong
- School of Arts and SciencesShanghai University of Medicine and Health SciencesShanghaiChina
| | - Yanli Zhou
- School of Arts and SciencesShanghai University of Medicine and Health SciencesShanghaiChina
| | - Liang Zhou
- Collaborative Innovation Center for BiomedicineShanghai University of Medicine and Health SciencesShanghaiChina
| |
Collapse
|
6
|
Marie V, Gordon ML. The (Re-)Emergence and Spread of Viral Zoonotic Disease: A Perfect Storm of Human Ingenuity and Stupidity. Viruses 2023; 15:1638. [PMID: 37631981 PMCID: PMC10458268 DOI: 10.3390/v15081638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Diseases that are transmitted from vertebrate animals to humans are referred to as zoonotic diseases. Although microbial agents such as bacteria and parasites are linked to zoonotic events, viruses account for a high percentage of zoonotic diseases that have emerged. Worryingly, the 21st century has seen a drastic increase in the emergence and re-emergence of viral zoonotic disease. Even though humans and animals have coexisted for millennia, anthropogenic factors have severely increased interactions between the two populations, thereby increasing the risk of disease spill-over. While drivers such as climate shifts, land exploitation and wildlife trade can directly affect the (re-)emergence of viral zoonotic disease, globalisation, geopolitics and social perceptions can directly facilitate the spread of these (re-)emerging diseases. This opinion paper discusses the "intelligent" nature of viruses and their exploitation of the anthropogenic factors driving the (re-)emergence and spread of viral zoonotic disease in a modernised and connected world.
Collapse
Affiliation(s)
- Veronna Marie
- Microbiology Laboratory, Department of Analytical Services, Rand Water, Vereeniging 1939, South Africa
| | - Michelle L. Gordon
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa;
| |
Collapse
|
7
|
Liu X, Xiao Y, Lin Z, Wang X, Hu K, Liu M, Zhao Y, Qi Y, Zhou S. Spatial scale-dependent dilution effects of biodiversity on plant diseases in grasslands. Ecology 2023; 104:e3944. [PMID: 36477908 DOI: 10.1002/ecy.3944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
The rapid biodiversity losses of the Anthropocene have motivated ecologists to understand how biodiversity affects infectious diseases. Spatial scale is thought to moderate negative biodiversity-disease relationships (i.e., dilution effects) in zoonotic diseases, whereas evidence from plant communities for an effect of scale remains limited, especially at local scales where the mechanisms (e.g., encounter reduction) underlying dilution effects actually work. Here, we tested how spatial scale affects the direction and magnitude of biodiversity-disease relationships. We utilized a 10-year-old nitrogen addition experiment in a Tibetan alpine meadow, with 0, 5, 10, and 15 g/m2 nitrogen addition treatments. Within the treatment plots, we arranged a total of 216 quadrats (of either 0.125 × 0.125 m, 0.25 × 0.25 m or 0.5 × 0.5 m size) to test how the sample area affects the relationship between plant species richness and foliar fungal disease severity. We found that the dilution effects were stronger in the 0.125 × 0.125 m and 0.25 × 0.25 m quadrats, compared with 0.5 × 0.5 m quadrats. There was a significant interaction between species richness and nitrogen addition in the 0.125 × 0.125 m and 0.25 × 0.25 m quadrats, indicating that a dilution effect was more easily observed under higher levels of nitrogen addition. Based on multigroup structural equation models, we found that even accounting for the direct impact of nitrogen addition (i.e., "nitrogen-disease hypothesis"), the dilution effect still worked at the 0.125 × 0.125 m scale. Overall, these findings suggest that spatial scale directly determines the occurrence of dilution effects, and can partly explain the observed variation in biodiversity-disease relationships in grasslands. Next-generation frameworks for predicting infectious diseases under rapid biodiversity loss scenarios need to incorporate spatial information.
Collapse
Affiliation(s)
- Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yao Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ziyuan Lin
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xingxing Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Kui Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Mu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yimin Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Yanwen Qi
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Shurong Zhou
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|