1
|
Câmara T, Cavalcante NT, Falcão HM, Santana E, Dos Santos Silva Teixeira G, Arnan X. Increased temperatures could heighten vulnerability of an ant-plant mutualism. Oecologia 2024; 207:8. [PMID: 39653799 DOI: 10.1007/s00442-024-05646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/30/2024] [Indexed: 02/12/2025]
Abstract
Mutualisms may be more or less sensitive to environmental conditions depending on the diversity and responses of the species involved. Ants frequently form mutualistic associations with plants bearing extrafloral nectaries (EFNs): the ants protect the plants from herbivores and receive food resources (i.e., nectar) in return. As ectotherms, ants are strongly influenced by temperature, and temperature shifts can affect ant-plant interactions in ways that often depend on species functional traits. In this study, we explored the influence of EFN size and leaf surface temperature on ant-plant interactions in a Caatinga dry forest in Brazil. We observed the ants visiting 14 EFN-bearing plant species at different times of day over 12 sampling months; we also measured leaf surface temperatures during these periods. We next quantified EFN size for 68 individuals from the 14 plant species. The observational data were used to characterize the heat tolerance of the attendant ant species (i.e., based on levels of foraging activity). We then evaluated the mutualism's degree of functional resilience using two indices: functional redundancy (i.e., the number of ant species interacting with a given plant species) and thermal response diversity (i.e., variability in the heat tolerance of the ant species interacting with a given plant species). We found that leaf surface temperature, but not EFN size, had an influence on mutualism functional resilience. As temperatures increased, both functional redundancy and thermal response diversity decreased. This result implies that warmer global temperatures could heighten the vulnerability of facultative ant-plant mutualisms, regardless of plant traits.
Collapse
Affiliation(s)
- Talita Câmara
- Universidade de Pernambuco-Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105-São José, Garanhuns, 55294-902, Brazil.
- Programa de Pós-Graduação Em Ciência E Tecnologia Ambiental, Universidade de Pernambuco-Campus Petrolina, BR 203, KM 2-Vila Eduardo, Petrolina, 56328-900, Brazil.
| | - Nathália Thais Cavalcante
- Universidade de Pernambuco-Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105-São José, Garanhuns, 55294-902, Brazil
- Programa de Pós-Graduação Em Ciência E Tecnologia Ambiental, Universidade de Pernambuco-Campus Petrolina, BR 203, KM 2-Vila Eduardo, Petrolina, 56328-900, Brazil
| | - Hiram Marinho Falcão
- Universidade de Pernambuco-Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105-São José, Garanhuns, 55294-902, Brazil
- Programa de Pós-Graduação Em Ciência E Tecnologia Ambiental, Universidade de Pernambuco-Campus Petrolina, BR 203, KM 2-Vila Eduardo, Petrolina, 56328-900, Brazil
| | - Esther Santana
- Universidade de Pernambuco-Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105-São José, Garanhuns, 55294-902, Brazil
| | | | - Xavier Arnan
- Universidade de Pernambuco-Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105-São José, Garanhuns, 55294-902, Brazil
- Programa de Pós-Graduação Em Ciência E Tecnologia Ambiental, Universidade de Pernambuco-Campus Petrolina, BR 203, KM 2-Vila Eduardo, Petrolina, 56328-900, Brazil
- CREAF, Campus de Bellaterra (UAB) Edifici C, 08193, Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Iasczczaki RS, Pallini A, Venzon M, Beghelli GM, de Assis CB, Marcossi I, Janssen A. Extrafloral nectar from coffee-associated trees as alternative food for a predatory mite. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 94:2. [PMID: 39638946 DOI: 10.1007/s10493-024-00967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Plant diversity can enhance natural pest control in agriculture by providing resources and conditions that are not regularly available in conventional crops to natural enemies of crop pests. Extrafloral nectar-producing plants, for example, might cause reduction of pest densities on neighboring plants because the nectar can increase the performance of natural enemies. Coffee agroforestry systems often contain extrafloral-nectar-producing Inga spp. trees that serve several purposes. Recent studies suggest that they attract and arrest a diversity of natural enemies that contribute to the control of coffee pests. Mites from the Phytoseiid family are key natural enemies of coffee pest mites, but no study has investigated whether Inga extrafloral nectar increases the performance of predatory mites in coffee ecosystems. Thus, here, we assessed whether the extrafloral nectar of Inga edulis Mart. (Fabaceae) can be considered a suitable nutritional resource for the predatory mite Amblyseius herbicolus (Chant), one of the most abundant phytoseiids in coffee crops. We found that feeding on extrafloral nectar allows for development and survival, but not reproduction, of A. herbicolus. Whereas individuals that fed on a diet of nectar during their immature development could subsequently only oviposit after having fed on a pollen diet, individuals that had developed on pollen stopped ovipositing when fed nectar. Our findings suggest that interplanted Inga trees can help to conserve populations of predatory mites in crop ecosystems through the provision of nectar and may boost biological control services. Future research should investigate the effects of extrafloral nectar-producing trees on coffee pest control by these predatory mites.
Collapse
Affiliation(s)
| | - Angelo Pallini
- Department of Entomology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Madelaine Venzon
- Department of Entomology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
- Agriculture and Livestock Research Enterprise of Minas Gerais (EPAMIG), Viçosa, Minas Gerais, Brazil
| | | | - Caio Binda de Assis
- Department of Entomology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Italo Marcossi
- Department of Entomology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
- Agriculture and Livestock Research Enterprise of Minas Gerais (EPAMIG), Prudente de Moraes, Minas Gerais, Brazil
| | - Arne Janssen
- Department of Entomology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil.
- Evolutionary and Population Biology, IBED, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Li Y, Schuldt A, Ebeling A, Eisenhauer N, Huang Y, Albert G, Albracht C, Amyntas A, Bonkowski M, Bruelheide H, Bröcher M, Chesters D, Chen J, Chen Y, Chen JT, Ciobanu M, Deng X, Fornoff F, Gleixner G, Guo L, Guo PF, Heintz-Buschart A, Klein AM, Lange M, Li S, Li Q, Li Y, Luo A, Meyer ST, von Oheimb G, Rutten G, Scholten T, Solbach MD, Staab M, Wang MQ, Zhang N, Zhu CD, Schmid B, Ma K, Liu X. Plant diversity enhances ecosystem multifunctionality via multitrophic diversity. Nat Ecol Evol 2024; 8:2037-2047. [PMID: 39209981 DOI: 10.1038/s41559-024-02517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Ecosystem functioning depends on biodiversity at multiple trophic levels, yet relationships between multitrophic diversity and ecosystem multifunctionality have been poorly explored, with studies often focusing on individual trophic levels and functions and on specific ecosystem types. Here, we show that plant diversity can affect ecosystem functioning both directly and by affecting other trophic levels. Using data on 13 trophic groups and 13 ecosystem functions from two large biodiversity experiments-one representing temperate grasslands and the other subtropical forests-we found that plant diversity increases multifunctionality through elevated multitrophic diversity. Across both experiments, the association between multitrophic diversity and multifunctionality was stronger than the relationship between the diversity of individual trophic groups and multifunctionality. Our results also suggest that the role of multitrophic diversity is greater in forests than in grasslands. These findings imply that, to promote sustained ecosystem multifunctionality, conservation planning must consider the diversity of both plants and higher trophic levels.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Andreas Schuldt
- Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Anne Ebeling
- Institute of Ecology and Evolution, University of Jena, Jena, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Georg Albert
- Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Cynthia Albracht
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelos Amyntas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | | | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yannan Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Ting Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Marcel Ciobanu
- Institute of Biological Research, Branch of the National Institute of Research and Development for Biological Sciences, Cluj-Napoca, Romania
| | - Xianglu Deng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Felix Fornoff
- Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Gerd Gleixner
- Department of Biogeochemical Processes (BGP), Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Liangdong Guo
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Peng-Fei Guo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Anna Heintz-Buschart
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexandra-Maria Klein
- Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Markus Lange
- Department of Biogeochemical Processes (BGP), Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Shan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yingbin Li
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Sebastian T Meyer
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, TUD Dresden University of Technology, Tharandt, Germany
| | - Gemma Rutten
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Thomas Scholten
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany
| | | | - Michael Staab
- Ecological Networks, Technical University of Darmstadt, Darmstadt, Germany
| | - Ming-Qiang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Biodiversity Conservation, Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Naili Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bernhard Schmid
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
- Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Cárdenas RE, Rodríguez-Ortega C, Utreras D, Forrister DL, Endara MJ, Queenborough SA, Alvia P, Menéndez-Guerrero PA, Báez S, Donoso DA. Long-term strict ant-plant mutualism identity characterises growth rate and leaf shearing resistance of an Amazonian myrmecophyte. Sci Rep 2024; 14:17813. [PMID: 39090121 PMCID: PMC11294366 DOI: 10.1038/s41598-024-67140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Over 125 million years of ant-plant interactions have culminated in one of the most intriguing evolutionary outcomes in life history. The myrmecophyte Duroia hirsuta (Rubiaceae) is known for its mutualistic association with the ant Myrmelachista schumanni and several other species, mainly Azteca, in the north-western Amazon. While both ants provide indirect defences to plants, only M. schumanni nests in plant domatia and has the unique behaviour of clearing the surroundings of its host tree from heterospecific plants, potentially increasing resource availability to its host. Using a 12-year survey, we asked how the continuous presence of either only M. schumanni or only Azteca spp. benefits the growth and defence traits of host trees. We found that the continuous presence of M. schumanni improved relative growth rates and leaf shearing resistance of Duroia better than trees with Azteca. However, leaf herbivory, dry matter content, trichome density, and secondary metabolite production were the same in all trees. Survival depended directly on ant association (> 94% of trees died when ants were absent). This study extends our understanding of the long-term effects of strict ant-plant mutualism on host plant traits in the field and reinforces the use of D. hirsuta-M. schumanni as a model system suitable for eco-co-evolutionary research on plant-animal interactions.
Collapse
Affiliation(s)
- Rafael E Cárdenas
- Museo de Zoología QCAZ, Laboratorio de Entomología y Herbario QCA, Laboratorio de Ecología de Plantas, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador.
| | - Camila Rodríguez-Ortega
- Museo de Zoología QCAZ, Laboratorio de Entomología y Herbario QCA, Laboratorio de Ecología de Plantas, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
| | - Daniel Utreras
- Museo de Zoología QCAZ, Laboratorio de Entomología y Herbario QCA, Laboratorio de Ecología de Plantas, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
| | - Dale L Forrister
- Smithsonian Tropical Research Institute, Apdo. 0843-03092, Balboa, Republic of Panama
| | - María-José Endara
- Grupo de Investigación en Ecología Evolutiva en los Trópicos-EETROP, Universidad de Las Américas, Quito, Ecuador
| | - Simon A Queenborough
- Museo de Zoología QCAZ, Laboratorio de Entomología y Herbario QCA, Laboratorio de Ecología de Plantas, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
- Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Pablo Alvia
- Estación Científica Yasuní, Pontificia Universidad Católica del Ecuador, Parque Nacional Yasuní, Orellana, Ecuador
| | - Pablo A Menéndez-Guerrero
- Laboratorio de Macroecología y Cambio Global, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
| | - Selene Báez
- Departamento de Biología, Facultad de Ciencias, Escuela Politécnica Nacional, Quito, Ecuador
| | - David A Donoso
- Grupo de Investigación en Ecología Evolutiva en los Trópicos-EETROP, Universidad de Las Américas, Quito, Ecuador
- Departamento de Biología, Facultad de Ciencias, Escuela Politécnica Nacional, Quito, Ecuador
| |
Collapse
|
5
|
Staab M, Pietsch S, Yan H, Blüthgen N, Cheng A, Li Y, Zhang N, Ma K, Liu X. Dear neighbor: Trees with extrafloral nectaries facilitate defense and growth of adjacent undefended trees. Ecology 2023; 104:e4057. [PMID: 37078562 DOI: 10.1002/ecy.4057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Plant diversity can increase productivity. One mechanism behind this biodiversity effect is facilitation, which is when one species increases the performance of another species. Plants with extrafloral nectaries (EFNs) establish defense mutualisms with ants. However, whether EFN plants facilitate defense of neighboring non-EFN plants is unknown. Synthesizing data on ants, herbivores, leaf damage, and defense traits from a forest biodiversity experiment, we show that trees growing adjacent to EFN trees had higher ant biomass and species richness and lower caterpillar biomass than conspecific controls without EFN-bearing neighbors. Concurrently, the composition of defense traits in non-EFN trees changed. Thus, when non-EFN trees benefit from lower herbivore loads as a result of ants spilling over from EFN tree neighbors, this may allow relatively reduced resource allocation to defense in the former, potentially explaining the higher growth of those trees. Via this mutualist-mediated facilitation, promoting EFN trees in tropical reforestation could foster carbon capture and multiple other ecosystem functions.
Collapse
Affiliation(s)
- Michael Staab
- Ecological Networks, Technical University Darmstadt, Darmstadt, Germany
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stefanie Pietsch
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg im Breisgau, Germany
- Field Station Fabrikschleichach, University of Würzburg, Würzburg, Germany
| | - Haoru Yan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nico Blüthgen
- Ecological Networks, Technical University Darmstadt, Darmstadt, Germany
| | - Anpeng Cheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Naili Zhang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station, Beijing, China
| |
Collapse
|