1
|
Michels MAHM, Volokhina EB, van de Kar NCAJ, van den Heuvel LPJ. Challenges in diagnostic testing of nephritic factors. Front Immunol 2022; 13:1036136. [PMID: 36451820 PMCID: PMC9702996 DOI: 10.3389/fimmu.2022.1036136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/12/2022] [Indexed: 09/27/2023] Open
Abstract
Nephritic factors (NeFs) are autoantibodies promoting the activity of the central enzymes of the complement cascade, an important first line of defense of our innate immune system. NeFs stabilize the complement convertase complexes and prevent their natural and regulator-mediated decay. They are mostly associated with rare complement-mediated kidney disorders, in particular with C3 glomerulopathy and related diseases. Although these autoantibodies were already described more than 50 years ago, measuring NeFs for diagnostic purposes remains difficult, and this also complicates our understanding of their clinical associations. In this review, we address the multifactorial challenges of NeF diagnostics. We describe the diseases NeFs are associated with, the heterogenic mechanisms of action of different NeF types, the different methods available in laboratories used for their detection, and efforts for standardization. Finally, we discuss the importance of proper NeF diagnostics for understanding the clinical impact of these autoantibodies in disease pathophysiology and for considering future complement-directed therapy.
Collapse
Affiliation(s)
- Marloes A. H. M. Michels
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elena B. Volokhina
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
- Innatoss Laboratories, Oss, Netherlands
| | - Nicole C. A. J. van de Kar
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lambertus P.W. J. van den Heuvel
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pediatrics/Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Michels MAHM, van de Kar NCAJ, van Kraaij SAW, Sarlea SA, Gracchi V, Engels FAPT, Dorresteijn EM, van der Deure J, Duineveld C, Wetzels JFM, van den Heuvel LPWJ, Volokhina EB. Different Aspects of Classical Pathway Overactivation in Patients With C3 Glomerulopathy and Immune Complex-Mediated Membranoproliferative Glomerulonephritis. Front Immunol 2021; 12:715704. [PMID: 34456924 PMCID: PMC8386118 DOI: 10.3389/fimmu.2021.715704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The rare and heterogeneous kidney disorder C3 glomerulopathy (C3G) is characterized by dysregulation of the alternative pathway (AP) of the complement system. C3G is often associated with autoantibodies stabilizing the AP C3 convertase named C3 nephritic factors (C3NeF). The role of classical pathway (CP) convertase stabilization in C3G and related diseases such as immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) remains largely unknown. Here, we investigated the CP convertase activity in patients with C3G and IC-MPGN. Using a refined two-step hemolytic assay, we measured the stability of CP convertases directly in the serum of 52 patients and 17 healthy controls. In four patients, CP convertase activity was prolonged compared to healthy controls, i.e. the enzymatic complex was stabilized. In three patients (2 C3G, 1 IC-MPGN) the convertase stabilization was caused by immunoglobulins, indicating the presence of autoantibodies named C4 nephritic factors (C4NeFs). Importantly, the assay also enabled detection of non-immunoglobulin-mediated stabilization of the CP convertase in one patient with C3G. Prolonged CP convertase activity coincided with C3NeF activity in all patients and for up to 70 months of observation. Crucially, experiments with C3-depleted serum showed that C4NeFs stabilized the CP C3 convertase (C4bC2a), that does not contain C3NeF epitopes. All patients with prolonged CP convertase activity showed clear signs of complement activation, i.e. lowered C3 and C5 levels and elevated levels of C3d, C3bc, C3bBbP, and C5b-9. In conclusion, this work provides new insights into the diverse aspects and (non-)immunoglobulin nature of factors causing CP convertase overactivity in C3G/IC-MPGN.
Collapse
Affiliation(s)
- Marloes A H M Michels
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nicole C A J van de Kar
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sanne A W van Kraaij
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sebastian A Sarlea
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Valentina Gracchi
- Department of Pediatric Nephrology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Flore A P T Engels
- Department of Pediatric Nephrology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Eiske M Dorresteijn
- Department of Pediatric Nephrology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Caroline Duineveld
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jack F M Wetzels
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lambertus P W J van den Heuvel
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Pediatrics/Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, University Hospitals Leuven, Leuven, Belgium
| | - Elena B Volokhina
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
3
|
Hauer JJ, Shao D, Zhang Y, Nester CM, Smith RJH. Factor B and C4b2a Autoantibodies in C3 Glomerulopathy. Front Immunol 2019; 10:668. [PMID: 31024533 PMCID: PMC6460050 DOI: 10.3389/fimmu.2019.00668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/11/2019] [Indexed: 12/04/2022] Open
Abstract
C3 Glomerulopathy (C3G) is a renal disease mediated primarily by dysregulation of the alternative pathway of complement. Complement is the cornerstone of innate immunity. It targets infectious microbes for destruction, clears immune complexes, and apoptotic cells from the circulation, and augments the humoral response. In C3G, this process becomes dysregulated, which leads to the deposition of complement proteins—including complement component C3—in the glomerular basement membrane of the kidney. Events that trigger complement are typically environmental insults like infections. Once triggered, in patients who develop C3G, complement activity is sustained by a variety of factors, including rare or novel genetic variants in complement genes and autoantibodies that alter normal complement protein function and/or regulation. Herein, we review two such autoantibodies, one to Factor B and the other to C4b2a, the C3 convertase of the classical, and lectin pathways. These two types of autoantibodies are identified in a small fraction of C3G patients and contribute marginally to the C3G phenotype.
Collapse
Affiliation(s)
- Jill J Hauer
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Dingwu Shao
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Carla M Nester
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
4
|
Corvillo F, Okrój M, Nozal P, Melgosa M, Sánchez-Corral P, López-Trascasa M. Nephritic Factors: An Overview of Classification, Diagnostic Tools and Clinical Associations. Front Immunol 2019; 10:886. [PMID: 31068950 PMCID: PMC6491685 DOI: 10.3389/fimmu.2019.00886] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022] Open
Abstract
Nephritic factors comprise a heterogeneous group of autoantibodies against neoepitopes generated in the C3 and C5 convertases of the complement system, causing its dysregulation. Classification of these autoantibodies can be clustered according to their stabilization of different convertases either from the classical or alternative pathway. The first nephritic factor described with the capacity to stabilize C3 convertase of the alternative pathway was C3 nephritic factor (C3NeF). Another nephritic factor has been characterized by the ability to stabilize C5 convertase of the alternative pathway (C5NeF). In addition, there are autoantibodies against assembled C3/C5 convertase of the classical and lectin pathways (C4NeF). These autoantibodies have been mainly associated with kidney diseases, like C3 glomerulopathy and immune complex-associated-membranoproliferative glomerulonephritis. Other clinical situations where these autoantibodies have been observed include infections and autoimmune disorders such as systemic lupus erythematosus and acquired partial lipodystrophy. C3 hypocomplementemia is a common finding in all patients with nephritic factors. The methods to measure nephritic factors are not standardized, technically complex, and lack of an appropriate quality control. This review will be focused in the description of the mechanism of action of the three known nephritic factors (C3NeF, C4NeF, and C5NeF), and their association with human diseases. Moreover, we present an overview regarding the diagnostic tools for its detection, and the main therapeutic approach for the patients with nephritic factors.
Collapse
Affiliation(s)
- Fernando Corvillo
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
| | - Marcin Okrój
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Pilar Nozal
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.,Immunology Unit, La Paz University Hospital, Madrid, Spain
| | - Marta Melgosa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Pediatric Nephrology Unit, La Paz University Hospital, Madrid, Spain
| | - Pilar Sánchez-Corral
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Zipfel PF, Skerka C, Chen Q, Wiech T, Goodship T, Johnson S, Fremeaux-Bacchi V, Nester C, de Córdoba SR, Noris M, Pickering M, Smith R. The role of complement in C3 glomerulopathy. Mol Immunol 2015; 67:21-30. [PMID: 25929733 DOI: 10.1016/j.molimm.2015.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/12/2022]
Abstract
C3 glomerulopathy describes a spectrum of disorders with glomerular pathology associated with C3 cleavage product deposition and with defective complement action and regulation (Fakhouri et al., 2010; Sethi et al., 2012b). Kidney biopsies from these patients show glomerular accumulation or deposition of C3 cleavage fragments, but no or minor deposition of immunoglobulins (Appel et al., 2005; D'Agati and Bomback, 2012; Servais et al., 2007; Sethi and Fervenza, 2011). At present the current situation asks for a better definition of the underlining disease mechanisms, for precise biomarkers, and for a treatment for this disease. The complement system is a self activating and propelling enzymatic cascade type system in which inactive, soluble plasma components are activated spontaneously and lead into an amplification loop (Zipfel and Skerka, 2009). Activation of the alternative pathway is spontaneous, occurs by default, and cascade progression leads to amplification by complement activators. The system however is self-controlled by multiple regulators and inhibitors, like Factor H that control cascade progression in fluid phase and on surfaces. The activated complement system generates a series of potent effector components and activation products, which damage foreign-, as well as modified self cells, recruit innate immune cells to the site of action, coordinate inflammation and the response of the adaptive immune system in form of B cells and T lymphocytes (Kohl, 2006; Medzhitov and Janeway, 2002; Ogden and Elkon, 2006; Carroll, 2004; Kemper and Atkinson, 2007; Morgan, 1999; Muller-Eberhard, 1986; Ricklin et al., 2010). Complement controls homeostasis and multiple reactions in the vertebrate organism including defense against microbial infections (Diaz-Guillen et al., 1999; Mastellos and Lambris, 2002; Nordahl et al., 2004; Ricklin et al., 2010). In consequence defective control of the spontaneous self amplifying cascade or regulation is associated with numerous human disorders (Ricklin and Lambris, 2007; Skerka and Zipfel, 2008; Zipfel et al., 2006). Understanding the exact action and regulation of this sophisticated homeotic cascade system is relevant to understand disease pathology of various complement associated human disorders. Furthermore this knowledge is relevant for a better diagnosis and appropriate therapy. At present diagnosis of C3 glomerulopathy is primarily based on the kidney biopsy, and histological, immmunohistological and electron microscopical evaluation (D'Agati and Bomback, 2012; Fakhouri et al., 2010; Medjeral-Thomas et al., 2014a,b; Sethi et al., 2012b). The challenge is to define the actual cause of the diverse glomerular changes or damages, to define how C3 deposition results in the reported glomerular changes, the location of the cell damage and the formation of deposits.
Collapse
Affiliation(s)
- Peter F Zipfel
- Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany; Friedrich Schiller University Jena, Germany.
| | - Christine Skerka
- Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Qian Chen
- Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Thorsten Wiech
- Institute for Pathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Goodship
- Institute of Human Genetics, University of Newcastle upon Tyne, United Kingdom
| | - Sally Johnson
- Institute of Human Genetics, University of Newcastle upon Tyne, United Kingdom
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hopitaux de Paris, Hospital European Georges-Pompidou and INSERM UMRS 1138, "Complement and Diseases" Team, Cordelier Research Center, Paris, France
| | - Clara Nester
- University of Iowa Carver College of Medicine, Otolaryngology, Iowa City, IA 52242, USA
| | - Santiago Rodríguez de Córdoba
- Departamento de Medicina Celular y Molecular, and Ciber de Enfermedades Raras, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Marina Noris
- Mario Negri Institute for Pharmacological Research, Ranica, Bergamo, Italy
| | | | - Richard Smith
- University of Iowa Carver College of Medicine, Otolaryngology, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Figuères ML, Frémeaux-Bacchi V, Rabant M, Galmiche L, Marinozzi MC, Grünfeld JP, Noël LH, Servais A. Heterogeneous histologic and clinical evolution in 3 cases of dense deposit disease with long-term follow-up. Hum Pathol 2014; 45:2326-33. [PMID: 25260719 DOI: 10.1016/j.humpath.2014.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
Abstract
Dense deposit disease is characterized by dense deposits in the glomerular and tubular basement membranes. We report 3 cases with long-term follow-up differing in histologic pattern and clinical evolution. Clinical and histologic data were collected between 1976 and 2012. Age at the first manifestations was 6, 11, and 23 years, respectively. They included proteinuria (patient 1) and nephrotic syndrome (patients 2 and 3); renal function was normal in all cases. Two patients (1 and 3) had low complement component 3 (C3) levels. All patients had C3 nephritic factor. Genetic analysis revealed a rare variant of the factor I gene (patient 1) and a heterozygous mutation in complement factor H-related 5 gene (patient 2). Patient 1 underwent 3 biopsies during her 38 years of follow-up. Thickening of the capillary walls of the glomerular and tubular basement membranes was observed, with mild mesangial proliferation and progressive C3 and complement membrane attack complex mesangial deposits. However, renal function remained normal. Patient 2 also underwent 3 biopsies (22 years of follow-up), revealing a gradual decrease in C3 deposition and mesangial cell proliferation. He presented mild renal insufficiency. Patient 3 underwent 2 biopsies, which displayed unusual bulky membranous deposits, confirmed by electron microscopy, with no mesangial cell proliferation and little C3 and complement membrane attack complex deposits. Kidney function remained normal. These 3 cases of dense deposit disease differed in histologic pattern evolution: accumulation of C3 deposits, decrease in C3 deposits and proliferation, and isolated dense deposits. The histologic factors involved in clinical progression remain to be identified.
Collapse
Affiliation(s)
| | - Véronique Frémeaux-Bacchi
- Department of Immunology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France 75015; Cordeliers Research Center, INSERM UMRS 872, Paris, France 75006
| | - Marion Rabant
- Department of Pathology, Hôpital Necker, AP-HP, Paris, France 75015; Paris Descartes University, Paris, France 75006
| | - Louise Galmiche
- Department of Pathology, Hôpital Necker, AP-HP, Paris, France 75015; Paris Descartes University, Paris, France 75006
| | | | - Jean-Pierre Grünfeld
- Paris Descartes University, Paris, France 75006; Department of Nephrology, Hôpital Necker, AP-HP, Paris, France 75015
| | - Laure-Hélène Noël
- Department of Pathology, Hôpital Necker, AP-HP, Paris, France 75015; Unité INSERM U1016, Hôpital Necker, Paris, France 75015
| | - Aude Servais
- Paris Descartes University, Paris, France 75006; Department of Nephrology, Hôpital Necker, AP-HP, Paris, France 75015.
| |
Collapse
|
7
|
Józsi M, Reuter S, Nozal P, López-Trascasa M, Sánchez-Corral P, Prohászka Z, Uzonyi B. Autoantibodies to complement components in C3 glomerulopathy and atypical hemolytic uremic syndrome. Immunol Lett 2014; 160:163-71. [DOI: 10.1016/j.imlet.2014.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 01/27/2023]
|
8
|
Dragon-Durey MA, Blanc C, Marinozzi MC, van Schaarenburg RA, Trouw LA. Autoantibodies against complement components and functional consequences. Mol Immunol 2013; 56:213-21. [PMID: 23790637 DOI: 10.1016/j.molimm.2013.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022]
Abstract
The complement system represents a major component of our innate immune defense. Although the physiological contribution of the complement system is beneficial, it can cause tissue damage when inappropriately activated or when it is a target of an autoantibody response. Autoantibodies directed against a variety of individual complement components, convertases, regulators and receptors have been described. For several autoantibodies the functional consequences are well documented and clear associations exist with clinical presentation, whereas for other autoantibodies targeting complement components this relation is currently insufficiently clear. Several anti-complement autoantibodies can also be detected in healthy controls, indicating that a second hit is required for such autoantibodies to induce or participate in pathology or alternatively that these antibodies are part of the natural antibody repertoire. In the present review, we describe autoantibodies against complement components and their functional consequences and discuss about their clinical relevance.
Collapse
|
9
|
Servais A, Noël LH, Roumenina LT, Le Quintrec M, Ngo S, Dragon-Durey MA, Macher MA, Zuber J, Karras A, Provot F, Moulin B, Grünfeld JP, Niaudet P, Lesavre P, Frémeaux-Bacchi V. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int 2012; 82:454-64. [PMID: 22456601 DOI: 10.1038/ki.2012.63] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dense deposit disease and glomerulonephritis with isolated C3 deposits are glomerulopathies characterized by deposits of C3 within or along the glomerular basement membrane. Previous studies found a link between dysregulation of the complement alternative pathway and the pathogenesis of these diseases. We analyzed the role of acquired and genetic complement abnormalities in a cohort of 134 patients, of whom 29 have dense deposit disease, 56 have glomerulonephritis with isolated C3 deposits, and 49 have primary membranoproliferative glomerulonephritis type I, with adult and pediatric onset. A total of 53 patients presented with a low C3 level, and 65 were positive for C3 nephritic factor that was significantly more frequently detected in patients with dense deposit disease than in other histological types. Mutations in CFH and CFI genes were identified in 24 patients associated with a C3 nephritic factor in half the cases. We found evidence for complement alternative pathway dysregulation in 26 patients with membranoproliferative glomerulonephritis type I. The complement factor H Y402H variant was significantly increased in dense deposit disease. We identified one at-risk membrane cofactor protein (MCP) haplotype for glomerulonephritis with isolated C3 deposits and membranoproliferative glomerulonephritis type I. Thus, our results suggest a critical role of fluid-phase alternative pathway dysregulation in the pathogenesis of C3 glomerulopathies as well as in immune complex-mediated glomerular diseases. The localization of the C3 deposits may be under the influence of MCP expression.
Collapse
Affiliation(s)
- Aude Servais
- Department of Nephrology, Hôpital Necker-Enfants Malades AP-HP, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Smith RJH, Harris CL, Pickering MC. Dense deposit disease. Mol Immunol 2011; 48:1604-10. [PMID: 21601923 DOI: 10.1016/j.molimm.2011.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 02/06/2023]
Abstract
Dense deposit disease (DDD) is an orphan disease that primarily affects children and young adults without sexual predilection. Studies of its pathophysiology have shown conclusively that it is caused by fluid-phase dysregulation of the alternative pathway of complement, however the role played by genetics and autoantibodies like C3 nephritic factors must be more thoroughly defined if we are to make an impact in the clinical management of this disease. There are currently no mechanism-directed therapies to offer affected patients, half of whom progress to end stage renal failure disease within 10 years of diagnosis. Transplant recipients face the dim prospect of disease recurrence in their allografts, half of which ultimately fail. More detailed genetic and complement studies of DDD patients may make it possible to identify protective factors prognostic for naïve kidney and transplant survival, or conversely risk factors associated with progression to renal failure and allograft loss. The pathophysiology of DDD suggests that a number of different treatments warrant consideration. As advances are made in these areas, there will be a need to increase healthcare provider awareness of DDD by making resources available to clinicians to optimize care for DDD patients.
Collapse
Affiliation(s)
- Richard J H Smith
- Department of Internal Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, 21151 PFP, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
11
|
Bhakdi S, Tranum-Jensen J. Damage to mammalian cells by proteins that form transmembrane pores. Rev Physiol Biochem Pharmacol 2005; 107:147-223. [PMID: 3303271 DOI: 10.1007/bfb0027646] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Abstract
The complement system has developed a remarkably simple but elegant manner of regulating itself. It has faced and successfully dealt with how to facilitate activation on a microbe while preventing the same on host tissue. It solved this problem primarily by creating a series of secreted and membrane-regulatory proteins that prevent two highly undesirable events: activation in the fluid phase (no target) and on host tissue (inappropriate target). Also, if not checked, even on an appropriate target, the system would go to exhaustion and have nothing left for the next microbe. Therefore, the complement enzymes have an intrinsic instability and the fluid-phase control proteins play a major role in limiting activation in time. The symmetry of the regulatory process between fluid phase and membrane inhibitors at the C4/C3 step of amplification and convertase formation as well as at the MAC steps are particularly striking features of the self/nonself discrimination system. The use of glycolipid anchored proteins on membranes to decay enzymes and block membrane insertion events is unlikely to be by chance. Finally, it is economical for the cofactor regulatory activity to produce derivatives of C3b that now specifically engage additional receptors. Likewise, C1-Inh leads to C1q remaining on the immune complex to interact with the C1q receptor. Thus the complement system is designed to allow rapid, efficient, unimpeded activation on an appropriate foreign target while regulatory proteins intervene to prevent three undesirable consequences of complement activation: excessive activation on a single target, fluid phase activation, and activation on self.
Collapse
Affiliation(s)
- M K Liszewski
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
13
|
Bhakdi S, Maillet F, Muhly M, Kazatchkine MD. The cytolytic C5b-9 complement complex: feedback inhibition of complement activation. Proc Natl Acad Sci U S A 1988; 85:1912-6. [PMID: 3162317 PMCID: PMC279891 DOI: 10.1073/pnas.85.6.1912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We describe a regulatory function of the terminal cytolytic C5b-9 complex [C5b-9(m)] of human complement. Purified C5b-9(m) complexes isolated from target membranes, whether in solution or bound to liposomes, inhibited lysis of sensitized sheep erythrocytes by whole human serum in a dose-dependent manner. C9 was not required for the inhibitory function since C5b-7 and C5b-8 complexes isolated from membranes were also effective. No effect was found with the cytolytically inactive, fluid-phase SC5b-9 complex. However, tryptic modification of SC5b-9 conferred an inhibitory capacity to the complex, due probably to partial removal of the S protein. Experiments using purified components demonstrated that C5b-9(m) exerts a regulatory effect on the formation of the classical- and alternative-pathway C3 convertases and on the utilization of C5 by cell-bound C5 convertases. C5b-9(m) complexes were unable to inhibit the lysis of cells bearing C5b-7(m) by C8 and C9. Addition of C5b-9(m) to whole human serum abolished its bactericidal effect on the serum-sensitive Escherichia coli K-12 strain W 3110 and suppressed its hemolytic function on antibody-sensitized, autologous erythrocytes. Feedback inhibition by C5b-9(m) represents a biologically relevant mechanism through which complement may autoregulate its effector functions.
Collapse
Affiliation(s)
- S Bhakdi
- Institute of Medical Microbiology, Giessen, Federal Republic of Germany
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- T E Mollnes
- Institute of Immunology and Rheumatology, Rikshospitalet, Oslo, Norway
| | | |
Collapse
|
15
|
Hiramatsu M, Tsokos GC. Epstein-Barr virus transformed B cell lines derived from patients with systemic lupus erythematosus produce a nephritic factor of the classical complement pathway. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1988; 46:91-9. [PMID: 2826058 DOI: 10.1016/0090-1229(88)90009-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nephritic factor of the classical complement pathway (C4NeF) is an IgG antibody which stabilizes the C3 convertase (C4b2a) and has been detected in sera from patients with systemic lupus erythematosus (SLE) and acute postinfectious glomerulonephritis. In order to study the production of nephritic factor (NeF), mononuclear cells were isolated from the peripheral blood of patients with SLE and infected with Epstein-Barr virus (EBV) to establish active B lymphocyte cell lines. Supernatants from 15 established B cell lines, as well as from 10 B cell lines established from normal individuals, were investigated for their ability to conserve the classical and the alternative pathway C3 convertases as assessed by EAC3bBb and EAC14b2a stabilizing assays. Supernatants from 2 of 15 B cell lines from patients with SLE, but none from normal individuals, stabilized the classical C3 convertase without having any effect on the alternative pathway C3 convertase. Using anti-human Ig affinity chromatography, we showed that C4NeF activity resided in the IgG fraction; the IgG fraction containing C4NeF activity bound to the C4b2a complex, but not to C4b alone. On gel electrophoresis, following reduction, the heavy chains were slightly heavier than the heavy chains of normal IgG. We were able to isolate C4NeF from the sera of the 2 patients with SLE from whom the positive supernatants were derived, but were unable to detect any C4NeF activity in the sera of the other 13 patients and the 10 normal individuals. Serum and B cell line supernatant-derived C4NeF exhibited comparable characteristics. We conclude that C4NeF produced in vitro by EBV-transformed B cell lines derived from patients with SLE is functionally similar to the conventional C4NeF in serum. These studies confirm the production of autoantibodies by B cells with the ability to stabilize the classical pathway C3 convertase in certain patients with SLE; stabilization of the C4b2a enzyme in these patients is an apparent mechanism for the development of hypocomplementemia. Finally, preparation of homogeneous C4NeF in vitro should improve our understanding of the role of autoantibodies in complement metabolic disturbances in autoimmune diseases.
Collapse
Affiliation(s)
- M Hiramatsu
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|