1
|
Xing C, Zhai B, Zhang Y, Fang Y, Zhang M, Zhang C, Wang W, Ding M, Huang X, Shen B, Wang R, Song L. Sleep deprivation reduced LPS-induced IgG2b production by up-regulating BMAL1 and CLOCK expression. Biochem Biophys Res Commun 2024; 691:149326. [PMID: 38035406 DOI: 10.1016/j.bbrc.2023.149326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Sleep deprivation (SD) weakens the immune system and leads to increased susceptibility to infectious or inflammatory diseases. However, it is still unclear how SD affects humoral immunity. In the present study, sleep disturbance was conducted using an sleep deprivation instrument, and the bacterial endotoxin lipopolysaccharide (LPS) was used to activate the immune response. It was found that SD-pretreatment reduced LPS-induced IgG2b+ B cells and IgG2b isotype antibody production in lymphocytes of spleen. And, SD-pretreatment decreased the proportion of CD4+T cells, production of CD4+T cells derived TGF-β1 and its contribution in helping IgG2b production. Additionally, BMAL1 and CLOCK were selectively up-regulated in lymphocytes after SD. Importantly, BMAL1 and CLOCK deficiency contributed to TGF-β1 expression and production of IgG2b+ B cells. Thus, our results provide a novel insight to explain the involvement of BMAL1 and CLOCK under SD stress condition, and their roles in inhibiting TGF-β1 expression and contributing to reduction of LPS induced IgG2b production.
Collapse
Affiliation(s)
- Chen Xing
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Bing Zhai
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Department of Geriatric Hematology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yifan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ying Fang
- Department of Rheumatology, First Hospital of Jilin University, Changchun, 130021, China
| | - Min Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chongchong Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University, Kaifeng, 475004, China
| | - Wei Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; School of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, China
| | - Mengnan Ding
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Lun Song
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
2
|
Expression and function of Smad7 in autoimmune and inflammatory diseases. J Mol Med (Berl) 2021; 99:1209-1220. [PMID: 34059951 PMCID: PMC8367892 DOI: 10.1007/s00109-021-02083-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Transforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.
Collapse
|
3
|
Seo BS, Yoon HK, Shin J, Park HY, Lee SH, Lee JE, Yoo YC, Lee J, Kim PH, Park SR. Cloning and analysis of promoter region of mouse immunoglobulin germline γ3 transcripts. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Seo GY, Jang YS, Kim HA, Lee MR, Park MH, Park SR, Lee JM, Choe J, Kim PH. Retinoic acid, acting as a highly specific IgA isotype switch factor, cooperates with TGF-β1 to enhance the overall IgA response. J Leukoc Biol 2013; 94:325-35. [PMID: 23744644 DOI: 10.1189/jlb.0313128] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The present study demonstrates that RA has activity of an IgA switch factor and is more specific than TGF-β1. RA independently caused only IgA switching, whereas TGF-β1 caused IgA and IgG2b switching. We found that RA increased IgA production and that this was a result of its ability to increase the frequency of IgA-secreting B cell clones. Increased IgA production was accompanied by an increase of GLTα. RA activity was abrogated by an antagonist of the RAR. Additionally, RA affected intestinal IgA production in mice. Surprisingly, RA, in combination with TGF-β1, notably enhanced not only IgA production and GLTα expression but also CCR9 and α4β7 expression on B cells. These results suggest that RA selectively induces IgA isotype switching through RAR and that RA and TGF-β have important effects on the overall gut IgA antibody response.
Collapse
Affiliation(s)
- Goo-Young Seo
- School of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ueberham U, Hilbrich I, Ueberham E, Rohn S, Glöckner P, Dietrich K, Brückner MK, Arendt T. Transcriptional control of cell cycle-dependent kinase 4 by Smad proteins--implications for Alzheimer's disease. Neurobiol Aging 2012; 33:2827-40. [PMID: 22418736 DOI: 10.1016/j.neurobiolaging.2012.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by deregulation of neuronal cell cycle and differentiation control eventually resulting in cell death. During brain development, neuronal differentiation is regulated by Smad proteins, which are elements of the canonical transforming growth factor β (TGF-β) signaling pathway, linking receptor activation to gene expression. In the normal adult brain, Smad proteins are constitutively phosphorylated and predominantly localized in neuronal nuclei. Under neurodegenerative conditions such as AD, the subcellular localization of their phosphorylated forms is heavily disturbed, raising the question of whether a nuclear Smad deficiency in neurons might contribute to a loss of neuronal differentiation control and subsequent cell cycle re-entry. Here, we show by luciferase reporter assays, electromobility shift, and RNA interference (RNAi) technique a direct binding of Smad proteins to the CDK4 promoter inducing transcriptional inhibition of cell cycle-dependent kinase 4 (Cdk4). Mimicking the neuronal deficiency of Smad proteins observed in AD in cell culture by RNAi results in elevation of Cdk4 and retardation of neurite outgrowth. The results identify Smad proteins as direct transcriptional regulators of Cdk4 and add further evidence to a Smad-dependent deregulation of Cdk4 in AD, giving rise to neuronal dedifferentiation and cell death.
Collapse
Affiliation(s)
- Uwe Ueberham
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, Universität Leipzig, Paul Flechsig Institute of Brain Research, Leipzig, D-04109, Jahnallee 59, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lee HJ, Seo GY, Kim JH, Lee MR, Kim PH. Activin A stimulates mouse macrophages to express APRIL via the Smad3 and ERK/CREB pathways. Immunol Lett 2011; 140:92-6. [PMID: 21784102 DOI: 10.1016/j.imlet.2011.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 12/31/2022]
Abstract
A proliferation-inducing ligand (APRIL) is primarily expressed by macrophages and dendritic cells, and stimulates B cell proliferation, differentiation, survival, and Ig production. In the present study, we investigated the role and signaling mechanisms of activin A in APRIL expression by mouse macrophages. Activin A markedly enhanced APRIL expression in mouse macrophages at both the transcriptional and protein levels. Overexpression of dominant-negative (DN)-Smad3 and SB431542 abrogated activin-induced APRIL transcription. Furthermore, activin A induced Smad3 phosphorylation. These results indicate that activin A enhances APRIL expression through both activin receptor-like kinase 4 (ALK4) and Smad3. In a subsequent analysis of activin A signaling, it was found that PD98059, an extracellular signal-related kinase (ERK) inhibitor, eliminated activin A-induced APRIL expression. On the other hand, overexpression of cAMP responsive element-binding protein (CREB), a molecule downstream of ERK, augmented activin A-induced APRIL expression, and this effect could be abolished by PD98059. This finding that activin A induces ERK and CREB phosphorylation suggests that ERK and CREB act as intermediates in APRIL expression. Taken together, these results demonstrate that activin A can enhance APRIL expression through two different pathways, Smad3 and ERK/CREB.
Collapse
Affiliation(s)
- Hwa-Joung Lee
- Department of Molecular Bioscience, College of Biomedical Science, Chuncheon 200-701, Republic of Korea
| | | | | | | | | |
Collapse
|
7
|
Matsuda M, Tamura K, Wakui H, Dejima T, Maeda A, Ohsawa M, Kanaoka T, Haku S, Azushima K, Yamasaki H, Saito D, Hirose T, Maeshima Y, Nagashima Y, Umemura S. Involvement of Runx3 in the basal transcriptional activation of the mouse angiotensin II type 1 receptor-associated protein gene. Physiol Genomics 2011; 43:884-94. [PMID: 21586669 DOI: 10.1152/physiolgenomics.00005.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously cloned a molecule that interacts with angiotensin II type 1 (AT1) receptor to exert an inhibitory function on AT1 receptor signaling that we named ATRAP/Agtrap (for AT1 receptor-associated protein). In the present study we examined the regulation of basal ATRAP gene expression using renal distal convoluted tubule cells. We found that serum starvation upregulated basal expression of ATRAP gene, a response that required de novo mRNA and protein synthesis. Luciferase assay revealed that the proximal promoter region directs transcription and that a putative binding site of runt-related transcription factors (RBE) is important for transcriptional activation. The results of RBE-decoy transfection and endogenous knockdown by small interference RNA showed that the runt-related transcription factor Runx3 is involved in ATRAP gene expression. Chromatin immunoprecipitation assay also supported the binding of Runx3 to the ATRAP promoter in renal distal convoluted tubule cells. Immunohistochemistry demonstrated the expression of Runx3 and ATRAP proteins in the distal convoluted and connecting tubules of the kidney in consecutive sections. Furthermore, the Runx3 immunostaining was decreased together with a concomitant suppression of ATRAP expression in the affected kidney after 7 days of unilateral ureteral obstruction. These findings indicate that Runx3 plays a role in ATRAP gene expression in renal distal tubular cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Miyuki Matsuda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
IFN-{gamma} produced by CD8 T cells induces T-bet-dependent and -independent class switching in B cells in responses to alum-precipitated protein vaccine. Proc Natl Acad Sci U S A 2010; 107:17292-7. [PMID: 20855629 DOI: 10.1073/pnas.1004879107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alum-precipitated protein (alum protein) vaccines elicit long-lasting neutralizing antibody responses that prevent bacterial exotoxins and viruses from entering cells. Typically, these vaccines induce CD4 T cells to become T helper 2 (Th2) cells that induce Ig class switching to IgG1. We now report that CD8 T cells also respond to alum proteins, proliferating extensively and producing IFN-γ, a key Th1 cytokine. These findings led us to question whether adoptive transfer of antigen-specific CD8 T cells alters the characteristic CD4 Th2 response to alum proteins and the switching pattern in responding B cells. To this end, WT mice given transgenic ovalbumin (OVA)-specific CD4 (OTII) or CD8 (OTI) T cells, or both, were immunized with alum-precipitated OVA. Cotransfer of antigen-specific CD8 T cells skewed switching patterns in responding B cells from IgG1 to IgG2a and IgG2b. Blocking with anti-IFN-γ antibody largely inhibited this altered B-cell switching pattern. The transcription factor T-bet is required in B cells for IFN-γ-dependent switching to IgG2a. By contrast, we show that this transcription factor is dispensable in B cells both for IFN-γ-induced switching to IgG2b and for inhibition of switching to IgG1. Thus, T-bet dependence identifies distinct transcriptional pathways in B cells that regulate IFN-γ-induced switching to different IgG isotypes.
Collapse
|