1
|
Jafarzadeh A, Bazargan N, Chatrabnous N, Jafarzadeh S, Nemati M. Contribution of survivin to the immune system, allergies and autoimmune diseases. Hum Immunol 2023; 84:301-310. [PMID: 36754653 DOI: 10.1016/j.humimm.2023.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/30/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
In addition to malignancies, survivin (a member of the apoptosis inhibitor family) has been implicated in the pathogenesis of inflammatory disorders, including autoimmune and allergic diseases. Survivin is constantly expressed in the proliferating hematopoietic progenitor cells, and it is re-expressed in the mature cells of the innate and adaptive immunity, upon activation. Survivin enhances the expression of co-stimulatory molecules and MHC class II molecules in dendritic cells, and promotes the lifespan of macrophages, neutrophils, and eosinophils, while suppressing natural killer (NK) cell activity. Survivin has been implicated in T cell maturation, T cell expansion, effector CD4+ T cell differentiation, maintenance of memory CD4+ T and CD8+ T cells, as well as antibody production. Upregulated expression of survivin was indicated in the T cells as well as various samples collected from allergic patients. Survivin can contribute to the pathogenesis of allergic diseases via the promotion of the Th2 polarization, promoting IL-4 expression, compromising activation-induced cell death (AICD) in Th2 cells, and preventing apoptosis of eosinophils, as well as, amplification of eosinophilia. Moreover, survivin can interfere with clonal deletion of autoreactive T and B cells, as well as suppress Treg cell development and activity supporting the development of autoimmune diseases. This review discusses the role of survivin in immunity, allergy and autoimmunity as well as provides evidence that survivin may be considered as a novel therapeutic target for the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Nasrin Bazargan
- Department of Internal Medicine, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Shomali N, Suliman Maashi M, Baradaran B, Daei Sorkhabi A, Sarkesh A, Mohammadi H, Hemmatzadeh M, Marofi F, Sandoghchian Shotorbani S, Jarahian M. Dysregulation of Survivin-Targeting microRNAs in Autoimmune Diseases: New Perspectives for Novel Therapies. Front Immunol 2022; 13:839945. [PMID: 35309327 PMCID: PMC8927965 DOI: 10.3389/fimmu.2022.839945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
It has been well established that the etiopathogenesis of diverse autoimmune diseases is rooted in the autoreactive immune cells' excessively proliferative state and impaired apoptotic machinery. Survivin is an anti-apoptotic and mitotic factor that has sparked a considerable research interest in this field. Survivin overexpression has been shown to contribute significantly to the development of autoimmune diseases via autoreactive immune cell overproliferation and apoptotic dysregulation. Several microRNAs (miRNAs/miRs) have been discovered to be involved in survivin regulation, rendering the survivin-miRNA axis a perspective target for autoimmune disease therapy. In this review, we discuss the role of survivin as an immune regulator and a highly implicated protein in the pathogenesis of autoimmune diseases, the significance of survivin-targeting miRNAs in autoimmunity, and the feasibility of targeting the survivin-miRNA axis as a promising therapeutic option for autoimmune diseases.
Collapse
Affiliation(s)
- Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marwah Suliman Maashi
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Hemmatzadeh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
3
|
Feng BS, Ma N, Zhang YY, Gao H, Zhang C, Li G, Liu Z, Feng Y, Yu HQ, Xiao L, Liu ZG, Yang PC. Survivin Impairs the Apoptotic Machinery in CD4+ T Cells of Patients with Ulcerative Colitis. J Innate Immun 2019; 12:226-234. [PMID: 31330513 PMCID: PMC7265744 DOI: 10.1159/000500546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The increase in CD4+ T cell infiltration and overproduction of CD4+ T cell-associated cytokines have been observed in the inflamed colon mucosa of patients with ulcerative colitis (UC); the underlying mechanisms are not fully understood. Survivin plays a critical role in the interference with apoptotic machinery. This study aims to elucidate the role of survivin in the interference with the apoptotic machinery in CD4+ T cells of UC patients. METHODS Peripheral blood samples were collected from UC patients (UC group) and healthy subjects (healthy group). The apoptotic status in CD4+ T cells was analyzed by flow cytometry. RESULTS We observed that the expression of survivin was significantly higher in CD4+ T cells of UC patients than in healthy subjects. UC CD4+ T cells were resistant to apoptosis induction. A complex of survivin and c-Myc, the transcription factor of FasL, was detected in CD4+ T cells in UC patients, which prevented the binding of c-Myc to the FasL promoter and interfered with the expression of FasL. Increased expression of survivin prevented the activation-induced CD4+ T cells from apoptosis. CONCLUSIONS The data indicate that UC CD4+ T cells express high levels of survivin, which impairs the apoptotic machinery in CD4+ T cells and prevents the activation-induced CD4+ T cell apoptosis. Therefore, target therapy against survivin has translational potential in the treatment of UC patients.
Collapse
Affiliation(s)
- Bai-Sui Feng
- Department of Gastroenterology, Second Hospital, Zhengzhou University, Zhengzhou, China
| | - Na Ma
- Department of Gastroenterology, Second Hospital, Zhengzhou University, Zhengzhou, China
| | - Yuan-Yi Zhang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Han Gao
- Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Cui Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Gengfeng Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yisheng Feng
- Department of Colorectal Surgery, Kunshan Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Kunshan City, China
| | - Hai-Qiong Yu
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Liang Xiao
- Metagenomic Institute, BGI Research GeneBank, Shenzhen, China
| | - Zhi-Gang Liu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ping-Chang Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
4
|
Gao H, Feng BS, Liu JQ, Mo LH, Geng XR, Xiao Y, Zhang YY, Hong JY, Liu ZJ, Liu ZG, Feng Y, Yang PC. Survivin induces defects in apoptosis in eosinophils in intestine with food allergy. Innate Immun 2019; 25:244-254. [PMID: 30755042 PMCID: PMC6830885 DOI: 10.1177/1753425919829554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/24/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
Survivin is an anti-apoptosis protein that may be associated with the development of eosinophilia; the latter is associated with the pathogenesis of many immune disorders. Here we report that less apoptotic eosinophils (Eos) were induced in those isolated from mice suffering from food allergy (FA) than those from naive mice after treating with cisplatin in vitro. Exposure to cisplatin induced more Fas ligand (FasL) expression in Eos isolated from naive mice than in those of FA mouse. Survivin was detected in the intestinal tissue extracts in much higher amounts in the FA group than in the naive group. Immunohistochemistry showed that epithelial cells were the major source of survivin in the intestine. Exposure to IL-4 or IL-13 up-regulated the expression of survivin in intestinal epithelial cells. Survivin interfered with the expression of FasL in Eos. Inhibition of survivin attenuated the eosinophilia-related inflammation in the intestine. In conclusion, intestinal epithelial cell-produced survivin induced defects in apoptosis in Eos to contribute to eosinophilia in the intestine. Inhibition of survivin can suppress the eosinophilia-related intestinal inflammation. The data suggest that survivin may be a novel target for the treatment of FA.
Collapse
Affiliation(s)
- Han Gao
- Department of Gastroenterology, The Shanghai Tenth People’s
Hospital of Tongji University, China
| | - Bai-Sui Feng
- Department of Gastroenterology, Second Hospital of Zhengzhou
University, China
| | - Jiang-Qi Liu
- Research Center of Allergy & Immunology, Shenzhen University
School of Medicine, China
- ENT Hospital & Shenzhen ENT Institute, China
| | - Li-Hua Mo
- Research Center of Allergy & Immunology, Shenzhen University
School of Medicine, China
- ENT Hospital & Shenzhen ENT Institute, China
| | - Xiao-Rui Geng
- Research Center of Allergy & Immunology, Shenzhen University
School of Medicine, China
- ENT Hospital & Shenzhen ENT Institute, China
| | - Yuan Xiao
- Pharmaceutical Preparation Section, Guizhou Province People’s
Hospital, Guiyang, China
| | - Yuan-Yi Zhang
- Research Center of Allergy & Immunology, Shenzhen University
School of Medicine, China
| | - Jing-Yi Hong
- Research Center of Allergy & Immunology, Shenzhen University
School of Medicine, China
| | - Zhan-ju Liu
- Department of Gastroenterology, The Shanghai Tenth People’s
Hospital of Tongji University, China
| | - Zhi-Gang Liu
- Research Center of Allergy & Immunology, Shenzhen University
School of Medicine, China
| | - Yisheng Feng
- Department of Colorectal Surgery, Kunshan Hospital of
Traditional Chinese Medicine Affiliated to Nanjing University of Chinese
Medicine, China
| | - Ping-Chang Yang
- Research Center of Allergy & Immunology, Shenzhen University
School of Medicine, China
| |
Collapse
|
5
|
Ebrahimiyan H, Aslani S, Rezaei N, Jamshidi A, Mahmoudi M. Survivin and autoimmunity; the ins and outs. Immunol Lett 2018; 193:14-24. [DOI: 10.1016/j.imlet.2017.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/13/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023]
|
6
|
Gravina G, Wasén C, Garcia-Bonete MJ, Turkkila M, Erlandsson MC, Töyrä Silfverswärd S, Brisslert M, Pullerits R, Andersson KM, Katona G, Bokarewa MI. Survivin in autoimmune diseases. Autoimmun Rev 2017; 16:845-855. [PMID: 28564620 DOI: 10.1016/j.autrev.2017.05.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Survivin is a protein functionally important for cell division, apoptosis, and possibly, for micro-RNA biogenesis. It is an established marker of malignant cell transformation. In non-malignant conditions, the unique properties of survivin make it indispensable for homeostasis of the immune system. Indeed, it is required for the innate and adaptive immune responses, controlling differentiation and maintenance of CD4+ and CD8+ memory T-cells, and in B cell maturation. Recently, survivin has emerged as an important player in the pathogenesis of autoimmune diseases. Under the conditions of unreserved inflammation, survivin enhances antigen presentation, maintains persistence of autoreactive cells, and supports production of autoantibodies. In this context, survivin takes its place as a diagnostic and prognostic marker in rheumatoid arthritis, psoriasis, systemic sclerosis and pulmonary arterial hypertension, neuropathology and multiple sclerosis, inflammatory bowel diseases and oral lichen planus. In this review, we summarise the knowledge about non-malignant properties of survivin and focus on its engagement in cellular and molecular pathology of autoimmune diseases. The review highlights utility of survivin measures for clinical applications. It provides rational for the survivin inhibiting strategies and presents results of recent reports on survivin inhibition in modern therapies of cancers and autoimmune diseases.
Collapse
Affiliation(s)
- G Gravina
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - C Wasén
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - M J Garcia-Bonete
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - M Turkkila
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - M C Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - S Töyrä Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - M Brisslert
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - R Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - K M Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - G Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - M I Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
7
|
Song J. Stem Cell-Derived Regulatory T Cells for Therapeutic Use in Arthritis. ACTA ACUST UNITED AC 2017; 2. [PMID: 28042612 PMCID: PMC5193373 DOI: 10.16966/2470-1025.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy regulatory T cells (Tregs) to treat autoimmune arthritis as they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) remain unknown. An ongoing project will determine the mechanisms underlying the Ag-specific PSC-Treg treatments that aim to modulate tolerance in autoimmune arthritis. The knowledge gained from these studies will provide new insights into cell-based therapies in autoimmune arthritis, and advance the understanding of fundamental mechanisms underlying Treg differentiation.
Collapse
Affiliation(s)
- Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
8
|
Song J. Development of Auto Antigen-specific Regulatory T Cells for Diabetes Immunotherapy. Immune Netw 2016; 16:281-285. [PMID: 27799873 PMCID: PMC5086452 DOI: 10.4110/in.2016.16.5.281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022] Open
Abstract
CD4+ regulatory T cells (Tregs) are essential for normal immune surveillance, and their dysfunction can lead to the development of autoimmune diseases, such as type-1 diabetes (T1D). T1D is a T cell-mediated autoimmune disease characterized by islet β cell destruction, hypoinsulinemia, and severely altered glucose homeostasis. Tregs play a critical role in the development of T1D and participate in peripheral tolerance. Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy Tregs to treat T1D as they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) remain undefined, especially molecular mechanisms that direct differentiation of such Tregs. Auto Ag-specific PSC-Tregs can be programmed to be tissue-associated and infiltrate to local inflamed tissue (e.g., islets) to suppress autoimmune responses after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. Developing auto Ag-specific PSC-Tregs can reduce overall immunosuppression after adoptive transfer by accumulating inflamed islets, which drives forward the use of therapeutic PSC-Tregs for cell-based therapies in T1D.
Collapse
Affiliation(s)
- Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
9
|
Haque M, Song J, Fino K, Wang Y, Sandhu P, Song X, Norbury C, Ni B, Fang D, Salek-Ardakani S, Song J. C-Myc regulation by costimulatory signals modulates the generation of CD8+ memory T cells during viral infection. Open Biol 2016; 6:150208. [PMID: 26791245 PMCID: PMC4736826 DOI: 10.1098/rsob.150208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The signalling mechanisms of costimulation in the development of memory T cells remain to be clarified. Here, we show that the transcription factor c-Myc in CD8+ T cells is controlled by costimulatory molecules, which modulates the development of memory CD8+ T cells. C-Myc expression was dramatically reduced in Cd28−/− or Ox40−/− memory CD8+ T cells, and c-Myc over-expression substantially reversed the defects in the development of T-cell memory following viral infection. C-Myc regulated the expression of survivin, an inhibitor of apoptosis, which promoted the generation of virus-specific memory CD8+ T cells. Moreover, over-expression of survivin with bcl-xL, a downstream molecule of NF-κB and intracellular target of costimulation that controls survival, in Cd28−/− or Ox40−/− CD8+ T cells, reversed the defects in the generation of memory T cells in response to viral infection. These results identify c-Myc as a key controller of memory CD8+ T cells from costimulatory signals.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jianyong Song
- Institutes of Irradiation/Immunology, The Third Military Medical University, Chongqing, People's Republic of China
| | - Kristin Fino
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Youfei Wang
- Institutes of Irradiation/Immunology, The Third Military Medical University, Chongqing, People's Republic of China
| | - Praneet Sandhu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Xinmeng Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Christopher Norbury
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Bing Ni
- Institutes of Irradiation/Immunology, The Third Military Medical University, Chongqing, People's Republic of China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shahram Salek-Ardakani
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
10
|
Andersson KME, Brisslert M, Cavallini NF, Svensson MND, Welin A, Erlandsson MC, Ciesielski MJ, Katona G, Bokarewa MI. Survivin co-ordinates formation of follicular T-cells acting in synergy with Bcl-6. Oncotarget 2016; 6:20043-57. [PMID: 26343374 PMCID: PMC4652986 DOI: 10.18632/oncotarget.4994] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023] Open
Abstract
Follicular T helper (Tfh) cells are recognized by the expression of CXCR5 and the transcriptional regulator Bcl-6. Tfh cells control B cell maturation and antibody production, and if deregulated, may lead to autoimmunity. Here, we study the role of the proto-oncogene survivin in the formation of Tfh cells. We show that blood Tfh cells of patients with the autoimmune condition rheumatoid arthritis, have intracellular expression of survivin. Survivin was co-localized with Bcl-6 in the nuclei of CXCR5+CD4 lymphocytes and was immunoprecipitated with the Bcl-6 responsive element of the target genes. Inhibition of survivin in arthritic mice led to the reduction of CXCR5+ Tfh cells and to low production of autoantibodies. Exposure to survivin activated STAT3 and induced enrichment of PD-1+Bcl-6+ subset within Tfh cells. Collectively, our study demonstrates that survivin belongs to the Tfh cell phenotype and ensures their optimal function by regulating transcriptional activity of Bcl-6.
Collapse
Affiliation(s)
- Karin M E Andersson
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mikael Brisslert
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Nicola Filluelo Cavallini
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mattias N D Svensson
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Division of Cellular Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Amanda Welin
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Malin C Erlandsson
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael J Ciesielski
- Department of Neurosurgery, Roswell Park Cancer Institute and State University of New York School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Wu Q, Tang Y, Hu X, Wang Q, Lei W, Zhou L, Huang J. Regulation of Th1/Th2 balance through OX40/OX40L signalling by glycyrrhizic acid in a murine model of asthma. Respirology 2015; 21:102-11. [PMID: 26467500 DOI: 10.1111/resp.12655] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/23/2015] [Accepted: 07/14/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Glycyrrhizic acid (GA) has been reported to have attenuating airway inflammation effects in asthma mouse model. However, the potential molecular mechanisms by which GA exerts anti-inflammatory effects on ovalbumin (OVA)-induced allergic asthma have not been well elaborated. METHODS The effect of GA on OVA-sensitized and challenged mice was investigated. The effect of GA on anti-OX40 mAb stimulated splenocytes from asthma mice model was also examined. RESULTS In OVA-induced asthmatic mice, GA treatment prevented the decrease of T helper1 cytokine (interferon (IFN)-γ) and the increase of T helper2 cytokines (interleukin (IL)-4, IL-5, IL-13) in bronchoalveolar lavage fluid (BALF), reduced serum immunoglobulin (Ig)E and OVA-specific IgE levels, prohibited the protein and mRNA expression of OX40 and OX40 Ligand (OX40L) in lung tissues, and the expression of OX40 in CD4(+) T cells and OX40L in CD11b(+) monocytes and CD19(+) B cells in spleens in a dose-dependent manner compared with the vehicle treatment (all P < 0.05). Moreover, OVA significantly increased the activation of p38 mitogen-activated protein kinase (MAPK) in lung tissues, whereas GA and anti-OX40L mAb markedly reduced phosphorylation of p38 MAPK. In addition, GA could inhibit the T cell proliferation and modulate the balance of Th1/Th2 in anti-OX40 mAb stimulated CD4(+) T cells from asthmatic spleens (all P < 0.05). CONCLUSIONS GA may exert a therapeutic effect on OVA-induced experimental asthma partly by regulating the Th1/Th2 balance through suppressing OX40-OX40L signalling and p38 MAPK activity. GA may be a promising treatment for asthma.
Collapse
Affiliation(s)
- Qiaozhen Wu
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Respiratory Medicine, The First People's Hospital of Wujiang, Suzhou, China
| | - Ying Tang
- Department of Respiratory Medicine, The First People's Hospital of Wujiang, Suzhou, China
| | - Xiaoyun Hu
- Department of Respiratory Medicine, The First People's Hospital of Wujiang, Suzhou, China
| | - Qin Wang
- Institute of Medical Biotechnology, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Linfu Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianan Huang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Chun-Lai T, Murad S, Erlandsson MC, Hussein H, Sulaiman W, Dhaliwal JS, Bokarewa MI. Recognizing rheumatoid arthritis: oncoprotein survivin opens new possibilities: a population-based case-control study. Medicine (Baltimore) 2015; 94:e468. [PMID: 25634192 PMCID: PMC4602940 DOI: 10.1097/md.0000000000000468] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Survivin is a biomarker of cancer known for its anti-apoptotic and cell-cycle regulating properties. In the context of non-cancer pathology, high levels of survivin may be measured in blood and synovial fluid of patients with rheumatoid arthritis (RA) and associate with early joint damage and poor therapy response. The aim of the study was to investigate the value of survivin measurements in blood for diagnosis of RA in the frame of the Malaysian epidemiological investigation of rheumatoid arthritis (MyEIRA) study. The study enrolled RA patients from eight rheumatology centres in Peninsular Malaysia. The healthy controls matched by age, gender and ethnicity were recruited on the community basis from the residential area of the patients. Levels of survivin were measured in blood of RA patients (n = 1233) and controls (n = 1566) by an enzyme-linked immuno-sorbent assay (ELISA). The risk for RA was calculated as odds ratio (OR) and 95% confidence intervals in the individuals with high levels of survivin. The risk was calculated in relation to antibodies against cyclic citrullinated peptides (ACPA), detected by ELISA and HLA-DRB1 shared epitope (SE) alleles, identified by the polymerase chain reaction using sequence specific oligonucleotide method. High levels of survivin were detected in 625 of 1233 (50.7%) RA cases and in 85 of 1566 (5.4%) controls, indicating its high specificity for RA. Survivin was association with an increase in RA risk in the patients having neither SE-alleles nor ACPA (OR = 5.40, 95% CI 3.81-7.66). For the patients combining survivin, SE, and ACPA, the estimated risk for RA was 16-folds higher compared to the survivin negative patients with SE and ACPA(OR = 16.21, 95% CI 5.70-46.18). To conclude, detection of survivin in blood provides a simple test to improve diagnostic and to increase predictability for RA.
Collapse
Affiliation(s)
- Too Chun-Lai
- From the Allergy and Immunology Research Center, Institute of Medical Research, Kuala Lumpur, Malaysia (TCL, SM, JSD); Department of Medicine, Rheumatology Unit, Karolinska University Hospital, Karolinska Institutet, Stockholm (TCL); Department of Rheumatology and Inflammation Research, Institute of Medicine, the University of Gothenburg, Göteborg, Sweden (ME, MIB); Department of Medicine, Putrajaya Hospital, Putrajaya (HH); and Department of Medicine, Raja Perempuan Bainun Hospital, Ipoh, Perak, Malaysia (WS)
| | | | | | | | | | | | | |
Collapse
|