1
|
Vallejo-Cremades M, Merino J, Carmona R, Córdoba L, Salvador B, Martínez L, Tovar JA, Llamas MÁ, Muñoz-Chápuli R, Fresno M. Toll-like receptors ligand immunomodulators for the treatment congenital diaphragmatic hernia. Orphanet J Rare Dis 2024; 19:386. [PMID: 39425191 PMCID: PMC11487987 DOI: 10.1186/s13023-024-03384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is a rare disease that affects the development of the diaphragm, leading to abnormal lung development. Unfortunately, there is no established therapy for CDH. Retinoic acid pathways are implicated in the ethology of CDH and macrophages are known to play a role in repairing organ damage. METHODS We have analyzed the effect of several Toll like receptor (TLR) ligands in the nitrofen-induced CDH model in pregnant rats widely used to study this disease and in the G2-GATA4Cre;Wt1fl/fl CDH genetic mice model. Morphometric and histological studies were carried out. Immune cell infiltration was assayed by immunochemistry and immunofluorescence and retinoic pathway gene expression analyzed in vivo and in vitro in macrophages. RESULTS We found that administering a single dose of atypical TLR2/4 ligands (CS1 or CS2), 3 days after nitrofen, cured diaphragmatic hernia in 73% of the fetuses and repaired the lesion with complete diaphragm closure being on the other hand nontoxic for the mothers or pups. Moreover, these immunomodulators also improved pulmonary hypoplasia and alveolar maturation and vessel hypertrophy, enhancing pulmonary maturity of fetuses. We also found that CS1 treatment rescued the CDH phenotype in the G2-GATA4Cre;Wt1fl/fl CDH genetic mice model. Only 1 out of 11 mutant embryos showed CDH after CS1 administration, whereas CDH prevalence was 70% in untreated mutant embryos. Mechanistically, CS1 stimulated the infiltration of repairing M2 macrophages (CD206+ and Arg1+) into the damaged diaphragm and reduced T cell infiltration. Additionally, those TLR ligands induced retinol pathway genes, including RBP1, RALDH2, RARα, and RARβ, in the affected lungs and the diaphragm and in macrophages in vitro. CONCLUSIONS Our research has shown that TLR ligand immunomodulators that influence anti-inflammatory macrophage activation can be effective in treating CDH, being nontoxic for the mothers or pups suggesting that those TLR ligands are a promising solution for CDH leading to orphan drug designation for CS1. The immune system of the fetus would be responsible for repairing the damage and closure of the hernia in the diaphragm and enhanced proper lung development after CS1 treatment.
Collapse
Affiliation(s)
| | - Javier Merino
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, Madrid, Spain
| | | | - Laura Córdoba
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, Madrid, Spain
| | | | | | | | | | | | - Manuel Fresno
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, Madrid, Spain.
| |
Collapse
|
2
|
Splichalova I, Balounová J, Vobořil M, Brabec T, Sedlacek R, Filipp D. Deletion of TLR2 + erythro-myeloid progenitors leads to embryonic lethality in mice. Eur J Immunol 2021; 51:2237-2250. [PMID: 34107067 DOI: 10.1002/eji.202049142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 11/05/2022]
Abstract
Early embryonic hematopoiesis in mammals is defined by three successive waves of hematopoietic progenitors which exhibit a distinct hematopoietic potential and provide continuous support for the development of the embryo and adult organism. Although the functional importance of each of these waves has been analyzed, their spatio-temporal overlap and the lack of wave-specific markers hinders the accurate separation and assessment of their functional roles during early embryogenesis. We have recently shown that TLR2, in combination with c-kit, represents the earliest signature of emerging precursors of the second hematopoietic wave, erythro-myeloid precursors (EMPs). Since the onset of Tlr2 expression distinguishes EMPs from primitive progenitors which coexist in the yolk sac from E7.5, we generated a novel transgenic "knock in" mouse model, Tlr2Dtr , suitable for inducible targeted depletion of TLR2+ EMPs. In this model, the red fluorescent protein and diphtheria toxin receptor sequences are linked via a P2A sequence and inserted into the Tlr2 locus before its stop codon. We show that a timely controlled deletion of TLR2+ EMPs in Tlr2Dtr embryos results in a marked decrease in both erythroid as well as myeloid lineages and, consequently, in embryonic lethality peaking before E13.5. These findings validate the importance of EMPs in embryonic development.
Collapse
Affiliation(s)
- Iva Splichalova
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Balounová
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Matouš Vobořil
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Brabec
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Burmenskaya OV, Poltavtseva RA, Panova IG. mRNAs of Genes of Toll-Like Receptors are Expressed in Human Fetal Eye Tissues. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420050033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
A comprehensive mechanistic review insight into the effects of micronutrients on toll-like receptors functions. Pharmacol Res 2019; 152:104619. [PMID: 31887355 DOI: 10.1016/j.phrs.2019.104619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/23/2019] [Accepted: 12/26/2019] [Indexed: 12/29/2022]
Abstract
Toll-like receptors (TLRs) are the special proteins receptors for recognition of molecules related to the pathogens. In this way, TLRs and secreted cytokines as a result of TLRs activation are involved in the inflammation pathways. So far, in vivo and in vitro studies have demonstrated that micronutrients (vitamins & minerals) with a broad range of effects on body health, can regulate TLRs signaling pathways. Current review aimed at determining the possible mechanisms of micronutrient effects on TLRs functions. In the aspect of gene expression, micronutrients have inconsistent effects on mRNA level of TLRs which are dependent on time, dose and type of studied TLR. Also, some micronutrients affect gene expression of TLRs signaling mediators namely TLRs adaptors like Myeloid differentiation primary response 88 (MyD88). In the aspect of TLRs signaling pathways, nuclear factor-κB (NF-κB) is an important mediator which is regulated by micronutrients. Also, the regulatory effects of micronutrients on phosphorylation reactions may be effective in the activation/inactivation of TLRs signaling mediators. In addition, zinc can regulate TLRs signaling indirectly via the zinc finger proteins which have contradictory effects on TLRs cascade. In conclusion, the relationship between micronutrients and TLRs signaling is complicated and depends on some known internal, external and genetic factors like form of studied micronutrient, cell type, TLR agonist, dose and time of exposure, inflammation, apoptosis, cell cycle, and environmental factors. Some unknown factors may be effective in TLRs response and as a result additional mechanistic studies are needed to elucidate exact effect of micronutrients on TLRs signaling.
Collapse
|
5
|
A role for macrophages in hematopoiesis in the embryonic head. Blood 2019; 134:1929-1940. [PMID: 31697805 DOI: 10.1182/blood.2018881243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Along with the aorta-gonad-mesonephros region, the head is a site of hematopoietic stem and progenitor cell (HS/PC) development in the mouse embryo. Macrophages are present in both these embryonic hemogenic sites, and recent studies indicate a functional interaction of macrophages with hematopoietic cells as they are generated in the aorta. Whereas brain macrophages or "microglia" are known to affect neuronal patterning and vascular circuitry in the embryonic brain, it is unknown whether macrophages play a role in head hematopoiesis. Here, we characterize head macrophages and examine whether they affect the HS/PC output of the hindbrain-branchial arch (HBA) region of the mouse embryo. We show that HBA macrophages are CD45+F4/80+CD11b+Gr1- and express the macrophage-specific Csf1r-GFP reporter. In the HBA of chemokine receptor-deficient (Cx3cr1-/-) embryos, a reduction in erythropoiesis is concomitant with a decrease in HBA macrophage percentages. In cocultures, we show that head macrophages boost hematopoietic progenitor cell numbers from HBA endothelial cells > twofold, and that the proinflammatory factor tumor necrosis factor-α is produced by head macrophages and influences HBA hematopoiesis in vitro. Taken together, head macrophages play a positive role in HBA erythropoiesis and HS/PC expansion and/or maturation, acting as microenvironmental cellular regulators in hematopoietic development.
Collapse
|
6
|
Toll-like receptor 2 expression on c-kit + cells tracks the emergence of embryonic definitive hematopoietic progenitors. Nat Commun 2019; 10:5176. [PMID: 31729371 PMCID: PMC6858454 DOI: 10.1038/s41467-019-13150-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022] Open
Abstract
Hematopoiesis in mammalian embryos proceeds through three successive waves of hematopoietic progenitors. Since their emergence spatially and temporally overlap and phenotypic markers are often shared, the specifics regarding their origin, development, lineage restriction and mutual relationships have not been fully determined. The identification of wave-specific markers would aid to resolve these uncertainties. Here, we show that toll-like receptors (TLRs) are expressed during early mouse embryogenesis. We provide phenotypic and functional evidence that the expression of TLR2 on E7.5 c-kit+ cells marks the emergence of precursors of erythro-myeloid progenitors (EMPs) and provides resolution for separate tracking of EMPs from primitive progenitors. Using in vivo fate mapping, we show that at E8.5 the Tlr2 locus is already active in emerging EMPs and in progenitors of adult hematopoietic stem cells (HSC). Together, this data demonstrates that the activation of the Tlr2 locus tracks the earliest events in the process of EMP and HSC specification. There is limited knowledge of markers to identify various waves of murine embryonic hematopoiesis. Here, the authors show that the expression of toll-like receptor 2 (TLR2) on E7.5 c-kit+ cells marks the emergence of erythro-myeloid progenitor precursors and that the Tlr2 locus is active in E8.5 precursors of adult HSCs.
Collapse
|
7
|
McGrath KE, Frame JM, Palis J. Early hematopoiesis and macrophage development. Semin Immunol 2016; 27:379-87. [PMID: 27021646 DOI: 10.1016/j.smim.2016.03.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/16/2016] [Indexed: 12/24/2022]
Abstract
The paradigm that all blood cells are derived from hematopoietic stem cells (HSCs) has been challenged by two findings. First, there are tissue-resident hematopoietic cells, including subsets of macrophages that are not replenished by adult HSCs, but instead are maintained by self-renewal of fetal-derived cells. Second, during embryogenesis, there is a conserved program of HSC-independent hematopoiesis that precedes HSC function and is required for embryonic survival. The presence of waves of HSC-independent hematopoiesis as well as fetal HSCs raises questions about the origin of fetal-derived adult tissue-resident macrophages. In the murine embryo, historical examination of embryonic macrophage and monocyte populations combined with recent reports utilizing genetic lineage-tracing approaches has led to a model of macrophage ontogeny that can be integrated with existing models of hematopoietic ontogeny. The first wave of hematopoiesis contains primitive erythroid, megakaryocyte and macrophage progenitors that arise in the yolk sac, and these macrophage progenitors are the source of early macrophages throughout the embryo, including the liver. A second wave of multipotential erythro-myeloid progenitors (EMPs) also arises in the yolk sac. EMPs colonize the fetal liver, initiating myelopoiesis and forming macrophages. Lineage tracing indicates that this second wave of macrophages are distributed in most fetal tissues, although not appreciably in the brain. Thus, fetal-derived adult tissue-resident macrophages, other than microglia, appear to predominately derive from EMPs. While HSCs emerge at midgestation and colonize the fetal liver, the relative contribution of fetal HSCs to tissue macrophages at later stages of development is unclear. The inclusion of macrophage potential in multiple waves of hematopoiesis is consistent with reports of their functional roles throughout development in innate immunity, phagocytosis, and tissue morphogenesis and remodeling. Understanding the influences of developmental origin, as well as local tissue-specific signals, will be necessary to fully decode the diverse functions and responses of tissue-resident macrophages.
Collapse
Affiliation(s)
- Kathleen E McGrath
- University of Rochester Medical Center, Center for Pediatric Biomedical Research, Department of Pediatrics, Box 703, 601 Elmwood Ave., Rochester, NY 14642, United States
| | - Jenna M Frame
- University of Rochester Medical Center, Center for Pediatric Biomedical Research, Department of Pediatrics, Box 703, 601 Elmwood Ave., Rochester, NY 14642, United States
| | - James Palis
- University of Rochester Medical Center, Center for Pediatric Biomedical Research, Department of Pediatrics, Box 703, 601 Elmwood Ave., Rochester, NY 14642, United States.
| |
Collapse
|
8
|
Li Y, Esain V, Teng L, Xu J, Kwan W, Frost IM, Yzaguirre AD, Cai X, Cortes M, Maijenburg MW, Tober J, Dzierzak E, Orkin SH, Tan K, North TE, Speck NA. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev 2014; 28:2597-612. [PMID: 25395663 PMCID: PMC4248291 DOI: 10.1101/gad.253302.114] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Here, Li et al. show that inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell (HSPC) formation. HSCs from aorta/gonad/mesonephros (AGM) regions of midgestation mouse embryos expressed a robust innate immune/inflammatory signature. Mouse embryos lacking interferon γ (IFN-γ )or IFN-α signaling and zebrafish lacking IFN-γ and IFN-ϕ activity had fewer AGM HSPCs. IRF2-occupied genes identified in human fetal liver CD34+ HSPCs were actively transcribed in human and mouse HSPCs. Identifying signaling pathways that regulate hematopoietic stem and progenitor cell (HSPC) formation in the embryo will guide efforts to produce and expand HSPCs ex vivo. Here we show that sterile tonic inflammatory signaling regulates embryonic HSPC formation. Expression profiling of progenitors with lymphoid potential and hematopoietic stem cells (HSCs) from aorta/gonad/mesonephros (AGM) regions of midgestation mouse embryos revealed a robust innate immune/inflammatory signature. Mouse embryos lacking interferon γ (IFN-γ) or IFN-α signaling and zebrafish morphants lacking IFN-γ and IFN-ϕ activity had significantly fewer AGM HSPCs. Conversely, knockdown of IFN regulatory factor 2 (IRF2), a negative regulator of IFN signaling, increased expression of IFN target genes and HSPC production in zebrafish. Chromatin immunoprecipitation (ChIP) combined with sequencing (ChIP-seq) and expression analyses demonstrated that IRF2-occupied genes identified in human fetal liver CD34+ HSPCs are actively transcribed in human and mouse HSPCs. Furthermore, we demonstrate that the primitive myeloid population contributes to the local inflammatory response to impact the scale of HSPC production in the AGM region. Thus, sterile inflammatory signaling is an evolutionarily conserved pathway regulating the production of HSPCs during embryonic development.
Collapse
Affiliation(s)
- Yan Li
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Virginie Esain
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Li Teng
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jian Xu
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Wanda Kwan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Isaura M Frost
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Amanda D Yzaguirre
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Xiongwei Cai
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Mauricio Cortes
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marijke W Maijenburg
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Joanna Tober
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Elaine Dzierzak
- The University of Edinburgh, Edinburgh EH8 9YL, United Kingdom
| | - Stuart H Orkin
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Kai Tan
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA; Department of Bioengineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Trista E North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Nancy A Speck
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| |
Collapse
|