1
|
Zhang Y, Zhang D, Chen L, Zhou J, Ren B, Chen H. The progress of autoimmune hepatitis research and future challenges. Open Med (Wars) 2023; 18:20230823. [PMID: 38025543 PMCID: PMC10655690 DOI: 10.1515/med-2023-0823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver inflammatory disease with various immune system manifestations, showing a global trend of increased prevalence. AIH is diagnosed through histological abnormalities, clinical manifestations, and biochemical indicators. The biochemical markers involve interfacial hepatitis, transaminase abnormalities, positive autoantibodies, etc. Although AIH pathogenesis is unclear, gene mutations and immunological factors could be the leading factors. AIH usually presents as a chronic liver disease and sometimes as acute hepatitis, making it challenging to distinguish it from drug-related hepatitis due to similar clinical symptoms. Normalizing transaminases and serum IgG levels is essential in assessing the remission status of AIH treatment. Glucocorticoids and azathioprine are the first-line AIH treatment, with lifelong maintenance therapy in some patients. The quality of life and survival can be improved after appropriate treatment. However, certain limitations jeopardize the quality of treatment, including long treatment cycles, side effects, poor patient compliance, and inability to inhibit liver fibrosis and cirrhosis. Accurate AIH animal models will help us understand the pathophysiology of the disease while providing fresh perspectives for avoiding and treating AIH. This review will help us understand AIH better, from the cellular and molecular causes to the clinical features, and will provide insight into new therapy techniques with fewer side effects.
Collapse
Affiliation(s)
- Yang Zhang
- Graduate Department of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dehe Zhang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ling Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jing Zhou
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Binbin Ren
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Haijun Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
2
|
Weeratunga P, Moller DR, Ho LP. Immune mechanisms in fibrotic pulmonary sarcoidosis. Eur Respir Rev 2022; 31:220178. [PMID: 36543347 PMCID: PMC9879330 DOI: 10.1183/16000617.0178-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Sarcoidosis is an immune-mediated disorder. Its immunopathology has been steadily mapped out over the past few decades. Despite this, the underpinning mechanisms for progressive fibrotic sarcoidosis is an almost uncharted area. Consequently, there has been little change in the clinical management of fibrotic sarcoidosis over the decades and an unfocused search for new therapeutics. In this review, we provide a comprehensive examination of the relevant immune findings in fibrotic and/or progressive pulmonary sarcoidosis and propose a unifying mechanism for the pathobiology of fibrosis in sarcoidosis.
Collapse
Affiliation(s)
- Praveen Weeratunga
- Oxford Sarcoidosis Clinic, Oxford Interstitial Lung Disease Service, Oxford, UK
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| | - David R Moller
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ling-Pei Ho
- Oxford Sarcoidosis Clinic, Oxford Interstitial Lung Disease Service, Oxford, UK
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Management of Sarcoidosis: When to Treat, How to Treat and for How Long? CURRENT PULMONOLOGY REPORTS 2022. [DOI: 10.1007/s13665-022-00298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose of Review
This review draws together recent publications, consensus statements on sarcoidosis and our 25-year collective experience in managing this disease. We focus on pulmonary sarcoidosis, highlighting recent and established concepts in disease mechanisms, the diversity of the clinical course, including possible ‘subtypes’ of sarcoidosis, and how to measure disease activity. We discuss the principles guiding therapeutic intervention and summarise the more recent clinical trials in sarcoidosis.
Recent Findings
These include recent progress in understanding the mechanisms of disease using new scientific tools, measurements of disease activity using CT and MRI scans, and the potential role of anti-fibrotic treatment for patients with progressive fibrotic sarcoidosis.
Summary
Sarcoidosis is a heterogeneous disease with variable organ involvement, disease course, and response to treatment. We offer an angle on when and how to treat, and provide an overall roadmap for managing sarcoidosis.
Collapse
|
4
|
Zhang H, Costabel U, Dai H. The Role of Diverse Immune Cells in Sarcoidosis. Front Immunol 2021; 12:788502. [PMID: 34868074 PMCID: PMC8640342 DOI: 10.3389/fimmu.2021.788502] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Sarcoidosis is a systemic inflammatory disorder of unknown etiology characterized by tissue infiltration with macrophages and lymphocytes and associated non-caseating granuloma formation. The disease primarily affects the lungs. Patients suffering from sarcoidosis show a wide range of clinical symptoms, natural history and disease outcomes. Originally described as a Th1-driven disease, sarcoidosis involves a complex interplay among diverse immune cells. This review highlights recent advances in the pathogenesis of sarcoidosis, with emphasis on the role of different immune cells. Accumulative evidence suggests Th17 cells, IFN-γ-producing Th17 cells or Th17.1 cells, and regulatory T (Treg) cells play a critical role. However, their specific actions, whether protective or pathogenic, remain to be clarified. Macrophages are also involved in granuloma formation, and M2 polarization may be predictive of fibrosis. Previously neglected cells including B cells, dendritic cells (DCs), natural killer (NK) cells and natural killer T (NKT) cells were studied more recently for their contribution to sarcoid granuloma formation. Despite these advances, the pathogenesis remains incompletely understood, indicating an urgent need for further research to reveal the distinct immunological events in this process, with hope to open up new therapeutic avenues and if possible, to develop preventive measures.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing, China
| | - Ulrich Costabel
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Hospital, Essen, Germany
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| |
Collapse
|
5
|
Fraser SD, Crooks MG, Kaye PM, Hart SP. Distinct immune regulatory receptor profiles linked to altered monocyte subsets in sarcoidosis. ERJ Open Res 2021; 7:00804-2020. [PMID: 33748262 PMCID: PMC7957298 DOI: 10.1183/23120541.00804-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/04/2020] [Indexed: 11/29/2022] Open
Abstract
Background In sarcoidosis, blood monocytes, circulating precursors of granuloma macrophages, display enhanced inflammatory cytokine production, reduced expression of the regulatory (inhibitory) receptor CD200R, and altered subsets defined by CD14 and CD16. Regulatory receptors serve to dampen monocyte and macrophage inflammatory responses. We investigated the relationship between monocyte subsets and regulatory receptor expression in sarcoidosis. Methods Multiparameter flow cytometry was used to perform detailed analyses of cell surface regulatory molecules on freshly isolated blood immune cells from patients with chronic pulmonary sarcoidosis and age-matched healthy controls. Results 25 patients with chronic pulmonary sarcoidosis (median duration of disease 22 months) who were not taking oral corticosteroids or other immunomodulators were recruited. Nonclassical monocytes were expanded in sarcoidosis and exhibited significantly lower expression of regulatory receptors CD200R, signal regulatory protein-α and CD47 than classical or intermediate monocytes. In sarcoidosis, all three monocyte subsets had significantly reduced CD200R and CD47 expression compared with healthy controls. A dichotomous distribution of CD200R was seen on classical and intermediate monocytes in the sarcoidosis population, with 14 out of 25 (56%) sarcoidosis patients having a CD200Rlow phenotype and 11 out of 25 (44%) having a CD200Rhigh phenotype. These distinct sarcoidosis monocyte phenotypes remained consistent over time. Conclusions Nonclassical monocytes, which are expanded in sarcoidosis, express very low levels of regulatory receptors. Two distinct and persistent phenotypes of CD200R expression in classical and intermediate monocytes could be evaluated as sarcoidosis biomarkers. Nonclassical monocytes, which are expanded in sarcoidosis, express very low levels of regulatory receptors. Two distinct and persistent phenotypes of CD200R expression in classical and intermediate monocytes could be evaluated as sarcoidosis biomarkers.https://bit.ly/2W0idAX
Collapse
Affiliation(s)
- Simon D Fraser
- Respiratory Research Group, Hull York Medical School, Castle Hill Hospital, Cottingham, UK
| | - Michael G Crooks
- Respiratory Research Group, Hull York Medical School, Castle Hill Hospital, Cottingham, UK
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Simon P Hart
- Respiratory Research Group, Hull York Medical School, Castle Hill Hospital, Cottingham, UK
| |
Collapse
|
6
|
Fraser SD, Hart SP. Monocytes and macrophages in chronic sarcoidosis pathology. Eur Respir J 2019; 54:54/5/1901626. [PMID: 31727798 DOI: 10.1183/13993003.01626-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Simon D Fraser
- Respiratory Research Group, Hull York Medical School, Castle Hill Hospital, Cottingham, UK
| | - Simon P Hart
- Respiratory Research Group, Hull York Medical School, Castle Hill Hospital, Cottingham, UK
| |
Collapse
|
7
|
The impact of donor characteristics on the invariant natural killer T cells of granulocyte-colony-stimulating factor-mobilized marrow grafts and peripheral blood grafts. Transpl Immunol 2018; 48:55-59. [PMID: 29475092 DOI: 10.1016/j.trim.2018.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Invariant natural killer T cells (iNKTs) are a rare but vital subset of immunomodulatory T cells and play an important role in allogeneic hematopoietic stem cell trans-plantation (HSCT). The association of donor characteristics with the number and frequency of the iNKTs subsets in allografts remains poorly understood. In this paper, we prospectively investigate the association of donor characteristics with iNKTs dose and frequency in granulocyte-colony-stimulating factor (G-CSF) mobilized marrow and peripheral blood harvests. MATERIALS AND METHODS 100 bone marrow (BM) units and 100 peripheral blood (PB) units from 100 healthy donors were examined. Parameters including donor age, sex, weight, height, BMI and blood count [including white blood cells (WBCs), lymphocytes and monocytes] at three time points [donor's steady state before G-CSF administration, the day of G-BM harvesting and the day of G-PB apheresis] were analyzed to explore the impact of donor characteristics on iNKTs composition in BM and PB grafts. RESULTS Multivariate analysis showed monocyte counts before G-BM harvest could predict higher frequency of iNKTs in WBC (OR = 2.593, 95%CI: 1.128-5.961, p = 0.025), higher total CD4+ iNKTs dose (OR = 2.250, 95%CI: 1.011-5.008, p = 0.047) and higher total iNKTs dose (OR = 2.662, 95%CI: 1.187-5.970, p = 0.017) in mixture allografts. DISCUSSION The results suggested that monocyte counts pre G-BM harvest could predict the yield of total CD4+ iNKTs and total iNKTs in mixture allografts. The male and older donors were associated with a higher dose of total CD4- iNKTs in mixture allografts.
Collapse
|
8
|
Arts RJW, Joosten LAB, Netea MG. The Potential Role of Trained Immunity in Autoimmune and Autoinflammatory Disorders. Front Immunol 2018. [PMID: 29515591 PMCID: PMC5826224 DOI: 10.3389/fimmu.2018.00298] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During induction of trained immunity, monocytes and macrophages undergo a functional and transcriptional reprogramming toward increased activation. Important rewiring of cellular metabolism of the myeloid cells takes place during induction of trained immunity, including a shift toward glycolysis induced through the mTOR pathway, as well as glutaminolysis and cholesterol synthesis. Subsequently, this leads to modulation of the function of epigenetic enzymes, resulting in important changes in chromatin architecture that enables increased gene transcription. However, in addition to the beneficial effects of trained immunity as a host defense mechanism, we hypothesize that trained immunity also plays a deleterious role in the induction and/or maintenance of autoimmune and autoinflammatory diseases if inappropriately activated.
Collapse
Affiliation(s)
- Rob J W Arts
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
T-cell immunology in sarcoidosis: Disruption of a delicate balance between helper and regulatory T-cells. Curr Opin Pulm Med 2017; 22:476-83. [PMID: 27379969 DOI: 10.1097/mcp.0000000000000303] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Although the aetiology of sarcoidosis is not yet completely understood, immunological changes within the T-cell compartment are characteristic for an exaggerated antigen-driven immune response. In this review, we describe the most recent findings on T-cell subset responses and regulation in sarcoidosis. We discuss how future immunological research can advance the field to unravel pathobiological mechanisms of this intriguingly complex disease. RECENT FINDINGS Research into the field of T-cell plasticity has recently challenged the long-held T helper type 1 (Th1) paradigm in sarcoidosis and striking parallels with autoimmune disorders and common variable immunodeficiency were recognized. For instance, it was demonstrated that Th17.1-cells rather than Th1-cells are responsible for the exaggerated IFN-γ production in pulmonary sarcoidosis. Furthermore, impaired regulatory T-cell function and alterations within the expression of co-inhibitory receptors that control T-cell responses, such as PD-1, CTLA-4 and BTNL2, raise new questions regarding T-cell regulation in pulmonary sarcoidosis. SUMMARY It becomes increasingly clear that Th17(.1)-cells and regulatory T-cells are key players in sarcoidosis T-cell immunology. New findings on plasticity and co-inhibitory receptor expression by these subsets help build a more comprehensive model for T-cell regulation in sarcoidosis and will finally shed light on the potential of new treatment modalities.
Collapse
|
10
|
Terčelj M, Salobir B, Rylander R. β-glucan in the lymph nodes in sarcoidosis and in Kveim-Siltzbach test reagent. SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2017; 34:130-135. [PMID: 32476834 DOI: 10.36141/svdld.v34i2.5844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 04/12/2017] [Indexed: 11/02/2022]
Abstract
Background: Previous studies have demonstrated a relationship between biomass of fungi exposure in the home and the risk of sarcoidosis. β-glucan was present in the bronchial alveolar lavage fluid (BALF) of patients with sarcoidosis. The Kveim-Siltzbach test reagent (KSTR) induces a sarcoidosis specific, granulomatous, cutaneous response and was used to establish the diagnosis. To date, the granuloma-inducing component of KSTR is still unknown. The present study was undertaken to investigate the presence of β-glucan in the lymph nodes of patients with sarcoidosis and to determine the relationship between the amounts of this agent with disease severity and to investigate the presence of β-glucan in KSTR. Materials and methods: Lymph node aspirations were collected by transbronchial needle aspiration (TBNA) in region R4 or 7 from patients with newly diagnosed sarcoidosis. The samples were treated to isolate β-glucan and analyzed using a Limulus-based assay. Cultures of Propionibacterium ac. and Mycobacterium gordonae as well as samples of Kveim-Siltzbach test reagent were analyzed to determine β-glucan content. Results: A significant relationship was observed between the amount of the β-glucan in the lymph nodes and the extent of granuloma formation in the lung parenchyma, and the size of the lymph nodes in the mediastinum (r=0.787, p=0.0001 and r=0.664, p<0.001 respectively, Spearman's test). The samples of Kveim-Siltzbach test reagent contained high levels of β-glucan. Cultures of Propionibacterium ac. and Mycobacterium gordonae contained β-glucan, the levels of which were lower in the Mycobacterium cultures. Comments: The results support the hypothesis that β-glucan, and thus fungal exposure, are involved in the pathogenesis of sarcoidosis. (Sarcoidosis Vasc Diffuse Lung Dis 2017; 34: 130-135).
Collapse
Affiliation(s)
- Marjeta Terčelj
- Department of Pulmonary Diseases and Allergy, University Medical Centre, Medical Faulty Ljubljana, Slovenia
| | - Barbara Salobir
- Department of Pulmonary Diseases and Allergy, University Medical Centre, Medical Faulty Ljubljana, Slovenia
| | | |
Collapse
|
11
|
Reduced expression of monocyte CD200R is associated with enhanced proinflammatory cytokine production in sarcoidosis. Sci Rep 2016; 6:38689. [PMID: 27929051 PMCID: PMC5144133 DOI: 10.1038/srep38689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022] Open
Abstract
In sarcoidosis, the proinflammatory cytokines interferon gamma, tumour necrosis factor and interleukin-6 are released by monocyte-derived macrophages and lymphocytes in the lungs and other affected tissues. Regulatory receptors expressed on monocytes and macrophages act to suppress cytokine production, and reduced expression of regulatory receptors may thus promote tissue inflammation. The aim of this study was to characterise the role of regulatory receptors on blood monocytes in patients with sarcoidosis. Cytokine release in response to stimulation of whole blood was measured in healthy controls and Caucasian non-smoking patients with sarcoidosis who were not taking disease modifying therapy. Expression of the regulatory molecules IL-10R, SIRP-α/β, CD47, CD200R, and CD200L was measured by flow cytometry, and functional activity was assessed using blocking antibodies. Stimulated whole blood and monocytes from patients with sarcoidosis produced more TNF and IL-6 compared with healthy controls. 52.9% of sarcoidosis patients had monocytes characterised by low expression of CD200R, compared with 11.7% of controls (p < 0.0001). Patients with low monocyte CD200R expression produced higher levels of proinflammatory cytokines. In functional studies, blocking the CD200 axis increased production of TNF and IL-6. Reduced expression of CD200R on monocytes may be a mechanism contributing to monocyte and macrophage hyper-activation in sarcoidosis.
Collapse
|
12
|
Abstract
Sarcoidosis is a systemic inflammatory disorder characterised by tissue infiltration by mononuclear phagocytes and lymphocytes with associated non-caseating granuloma formation. Originally described as a disorder of the skin, sarcoidosis can involve any organ with wide-ranging clinical manifestations and disease course. Recent studies have provided new insights into the mechanisms involved in disease pathobiology, and we now know that sarcoidosis has a clear genetic basis largely involving human leukocyte antigen (HLA) genes. In contrast to Mendelian-monogenic disorders--which are generally due to specific and relatively rare mutations often leading to a single amino acid change in an encoded protein--sarcoidosis results from genetic variations relatively common in the general population and involving multiple genes, each contributing an effect of varying magnitude. However, an individual may have the necessary genetic profile and yet the disease will not develop unless an environmental or infectious factor is encountered. Genetics appears also to contribute to the huge variability in clinical phenotype and disease behaviour. Moreover, it has been established that sarcoidosis granulomatous inflammation is a highly polarized T helper 1 immune response that starts with an antigenic stimulus followed by T cell activation via a classic HLA class II-mediated pathway. A complex network of lymphocytes, macrophages, and cytokines is pivotal in the orchestration and evolution of the granulomatous process. Despite these advances, the aetiology of sarcoidosis remains elusive and its pathogenesis incompletely understood. As such, there is an urgent need for a better understanding of disease pathogenesis, which hopefully will translate into the development of truly effective therapies.
Collapse
|