1
|
Tabatabaei FS, Shafeghat M, Azimi A, Akrami A, Rezaei N. Endosomal Toll-Like Receptors intermediate negative impacts of viral diseases, autoimmune diseases, and inflammatory immune responses on the cardiovascular system. Expert Rev Clin Immunol 2025; 21:195-207. [PMID: 39137281 DOI: 10.1080/1744666x.2024.2392815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of morbidity globally, with chronic inflammation as a key modifiable risk factor. Toll-like receptors (TLRs), pivotal components of the innate immune system, including TLR-3, -7, -8, and -9 within endosomes, trigger intracellular cascades, leading to inflammatory cytokine production by various cell types, contributing to systemic inflammation and atherosclerosis. Recent research highlights the role of endosomal TLRs in recognizing self-derived nucleic acids during sterile inflammation, implicated in autoimmune conditions like myocarditis. AREAS COVERED This review explores the impact of endosomal TLRs on viral infections, autoimmunity, and inflammatory responses, shedding light on their intricate involvement in cardiovascular health and disease by examining literature on TLR-mediated mechanisms and their roles in CVD pathophysiology. EXPERT OPINION Removal of endosomal TLRs mitigates myocardial damage and immune reactions, applicable in myocardial injury. Targeting TLRs with agonists enhances innate immunity against fatal viruses, lowering viral loads and mortality. Prophylactic TLR agonist administration upregulates TLRs, protecting against fatal viruses and improving survival. TLRs play a complex role in CVDs like atherosclerosis and myocarditis, with therapeutic potential in modulating TLR reactions for cardiovascular health.
Collapse
Affiliation(s)
- Fatemeh Sadat Tabatabaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Melika Shafeghat
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Azimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashley Akrami
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
2
|
Sharma S, Artner T, Preissner KT, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free RNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024; 398:118584. [PMID: 39306538 DOI: 10.1016/j.atherosclerosis.2024.118584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 11/17/2024]
Abstract
Cardiovascular diseases (CVD) and their complications continue to be the leading cause of mortality globally. With recent advancements in molecular analytics, individualized treatments are gradually applied to the diagnosis and treatment of CVD. In the field of diagnostics, liquid biopsy combined with modern analytical technologies is the most popular natural source to identify disease biomarkers, as has been successfully demonstrated in the cancer field. While it is not easy to obtain any diseased tissue for different types of CVD such as atherosclerosis, deep vein thrombosis or stroke, liquid biopsies provide a simple and non-invasive alternative to surgical tissue specimens to obtain dynamic molecular information reflecting disease states. The release of cell-free ribonucleic acids (cfRNA) from stressed/damaged/dying and/or necrotic cells is a common physiological phenomenon. CfRNAs are a heterogeneous population of various types of extracellular RNA found in body fluids (blood, urine, saliva, cerebrospinal fluid) or in association with vascular/atherosclerotic tissue, offering insights into disease pathology on a diagnostic front. In particular, cf-ribosomal RNA has been shown to act as a damaging molecule in several cardio-vascular disease conditions. Moreover, such pathophysiological functions of cfRNA in CVD have been successfully antagonized by the administration of RNases. In this review, we discuss the origin, structure, types, and potential utilization of cfRNA in the diagnosis of CVD. Together with the analysis of established CVD biomarkers, the profiling of cfRNA in body fluids may thereby provide a promising approach for early disease detection and monitoring.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Klaus T Preissner
- Kerckhoff-Heart Research Institute, Department Cardiology, Justus-Liebig-University, Giessen, Germany
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Najem MY, Rys RN, Laurance S, Bertin F, Gourdou‐Latyszenok V, Gourhant L, Le Gall L, Le Corre R, Couturaud F, Blostein MD, Lemarié CA. Extracellular RNA Induces Neutrophil Recruitment Via Toll-Like Receptor 3 During Venous Thrombosis After Vascular Injury. J Am Heart Assoc 2024; 13:e034492. [PMID: 39028040 PMCID: PMC11964037 DOI: 10.1161/jaha.124.034492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/24/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Venous thromboembolism is associated with endothelial cell activation that contributes to the inflammation-dependent activation of the coagulation system. Cellular damage is associated with the release of different species of extracellular RNA (eRNA) involved in inflammation and coagulation. TLR3 (toll-like receptor 3), which recognizes (viral) single-stranded or double-stranded RNAs and self-RNA fragments, might be the receptor of these species of eRNA during venous thromboembolism. Here, we investigate how the TLR3/eRNA axis contributes to venous thromboembolism. METHODS AND RESULTS Thrombus formation and size in wild-type and TLR3 deficient (-/-) mice were monitored by ultrasonography after venous thrombosis induction using the ferric chloride and stasis models. Mice were treated with RNase I, with polyinosinic-polycytidylic acid, a TLR3 agonist, or with RNA extracted from murine endothelial cells. Gene expression and signaling pathway activation were analyzed in HEK293T cells overexpressing TLR3 in response to eRNA or in human umbilical vein endothelial cells transfected with a small interference RNA against TLR3. Plasma clot formation on treated human umbilical vein endothelial cells was analyzed. Thrombosis exacerbated eRNA release in vivo and increased eRNA content within the thrombus. RNase I treatment reduced thrombus size compared with vehicle-treated mice (P<0.05). Polyinosinic-polycytidylic acid and eRNA treatments increased thrombus size in wild-type mice (P<0.01 and P<0.05), but not in TLR3-/- mice, by reinforcing neutrophil recruitment (P<0.05). Mechanistically, TLR3 activation in endothelial cells promotes CXCL5 (C-X-C motif chemokine 5) secretion (P<0.001) and NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation (P<0.05). Finally, eRNA triggered plasma clot formation in vitro (P<0.01). CONCLUSIONS We show that eRNA and TLR3 activation enhance venous thromboembolism through neutrophil recruitment possibly through secretion of CXCL5, a potent neutrophil chemoattractant.
Collapse
Affiliation(s)
| | - Ryan N. Rys
- Lady Davis Institute for Medical ResearchMontréalQuébecCanada
| | - Sandrine Laurance
- Lady Davis Institute for Medical ResearchMontréalQuébecCanada
- INSERM, BIGR, Université de Paris and Université des AntillesParisFrance
| | - François‐René Bertin
- Lady Davis Institute for Medical ResearchMontréalQuébecCanada
- School of Veterinary ScienceThe University of QueenslandGattonQueenslandAustralia
| | | | | | | | | | - Francis Couturaud
- Univ Brest, Inserm, UMR 1304, GETBOBrestFrance
- Département de Pneumologie et de Médecine InterneCHU BrestBrestFrance
| | - Mark D. Blostein
- Lady Davis Institute for Medical ResearchMontréalQuébecCanada
- Department of MedicineSir Mortimer B. Davis‐Jewish General Hospital, McGill UniversityMontréalQuébecCanada
| | - Catherine A. Lemarié
- Univ Brest, Inserm, UMR 1304, GETBOBrestFrance
- Département de Pneumologie et de Médecine InterneCHU BrestBrestFrance
- Lady Davis Institute for Medical ResearchMontréalQuébecCanada
| |
Collapse
|
4
|
Tewari A, Rajak S, Raza S, Gupta P, Chakravarti B, Srivastava J, Chaturvedi CP, Sinha RA. Targeting Extracellular RNA Mitigates Hepatic Lipotoxicity and Liver Injury in NASH. Cells 2023; 12:1845. [PMID: 37484201 PMCID: PMC7614796 DOI: 10.3390/cells12141845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a clinically serious stage of non-alcoholic fatty liver disease (NAFLD). Histologically characterized by hepatocyte ballooning, immune cell infiltration, and fibrosis, NASH, at a molecular level, involves lipid-induced hepatocyte death and cytokine production. Currently, there are very few diagnostic biomarkers available to screen for NASH, and no pharmacological intervention is available for its treatment. In this study, we show that hepatocyte damage induced by lipotoxicity results in the release of extracellular RNAs (eRNAs), which serve as damage-associated molecular patterns (DAMPs) that stimulate the expression of pro-apoptotic and pro-inflammatory cytokines, aggravate inflammation, and lead to cell death in HepG2 cells. Furthermore, the inhibition of eRNA activity by RNase 1 significantly increases cellular viability and reduces NF-kB-mediated cytokine production. Similarly, RNase 1 administration significantly improves hepatic steatosis, inflammatory and injury markers in a murine NASH model. Therefore, this study, for the first time, underscores the therapeutic potential of inhibiting eRNA action as a novel strategy for NASH treatment.
Collapse
Affiliation(s)
- Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (A.T.); (S.R.); (S.R.); (P.G.); (B.C.)
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (A.T.); (S.R.); (S.R.); (P.G.); (B.C.)
| | - Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (A.T.); (S.R.); (S.R.); (P.G.); (B.C.)
| | - Pratima Gupta
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (A.T.); (S.R.); (S.R.); (P.G.); (B.C.)
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (A.T.); (S.R.); (S.R.); (P.G.); (B.C.)
| | - Jyotika Srivastava
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (J.S.); (C.P.C.)
| | - Chandra P. Chaturvedi
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (J.S.); (C.P.C.)
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (A.T.); (S.R.); (S.R.); (P.G.); (B.C.)
| |
Collapse
|
5
|
Bhagat S, Biswas I, Alam MI, Khan M, Khan GA. Key role of Extracellular RNA in hypoxic stress induced myocardial injury. PLoS One 2021; 16:e0260835. [PMID: 34882718 PMCID: PMC8659422 DOI: 10.1371/journal.pone.0260835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023] Open
Abstract
Myocardial infarction (MI), atherosclerosis and other inflammatory and ischemic cardiovascular diseases (CVDs) have a very high mortality rate and limited therapeutic options. Although the diagnosis is based on markers such as cardiac Troponin-T (cTrop-T), the mechanism of cTrop-T upregulation and release is relatively obscure. In the present study, we have investigated the mechanism of cTrop-T release during acute hypoxia (AH) in a mice model by ELISA & immunohistochemistry. Our study showed that AH exposure significantly induces the expression and release of sterile inflammatory as well as MI markers in a time-dependent manner. We further demonstrated that activation of TLR3 (mediated by eRNA) by AH exposure in mice induced cTrop-T release and Poly I:C (TLR3 agonist) also induced cTrop-T release, but the pre-treatment of TLR3 immuno-neutralizing antibody or silencing of Tlr3 gene or RNaseA treatment two hrs before AH exposure, significantly abrogated AH-induced Caspase 3 activity as well as cTrop-T release. Our immunohistochemistry and Masson Trichrome (MT) staining studies further established the progression of myocardial injury by collagen accumulation, endothelial cell and leukocyte activation and adhesion in myocardial tissue which was abrogated significantly by pre-treatment of RNaseA 2 hrs before AH exposure. These data indicate that AH induced cTrop-T release is mediated via the eRNA-TLR3-Caspase 3 pathway.
Collapse
Affiliation(s)
- Saumya Bhagat
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Timarpur, New Delhi, India
| | - Indranil Biswas
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Timarpur, New Delhi, India
| | - Md Iqbal Alam
- Department of Physiology, HIMSAR, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | | | - Gausal A. Khan
- Department of Physiology & Physiotherapy, College of Medicine, Nursing & Health Sciences, Fiji National University, Suva, Fiji Islands
| |
Collapse
|
6
|
An Integrated Approach of the Potential Underlying Molecular Mechanistic Paradigms of SARS-CoV-2-Mediated Coagulopathy. Indian J Clin Biochem 2021; 36:387-403. [PMID: 33875909 PMCID: PMC8047580 DOI: 10.1007/s12291-021-00972-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/03/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (Covid-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pandemic disease which has affected more than 6.2 million people globally, with numbers mounting considerably daily. However, till date, no specific treatment modalities are available for Covid-19 and also not much information is known about this disease. Recent studies have revealed that SARS-CoV-2 infection is associated with the generation of thrombosis and coagulopathy. Fundamentally, it has been believed that a diverse array of signalling pathways might be responsible for the activation of coagulation cascade during SARS-CoV-2 infection. Henceforth, a detailed understanding of these probable underlying molecular mechanistic pathways causing thrombosis in Covid-19 disease deserves an urgent exploration. Therefore, in this review, the hypothetical crosstalk between distinct signalling pathways including apoptosis, inflammation, hypoxia and angiogenesis attributable for the commencement of thrombotic events during SARS-CoV-2 infection has been addressed which might further unravel promising therapeutic targets in Covid-19 disease.
Collapse
|
7
|
Haidar MA, Jourdi H, Haj Hassan Z, Ashekyan O, Fardoun M, Wehbe Z, Maaliki D, Wehbe M, Mondello S, Abdelhady S, Shahjouei S, Bizri M, Mechref Y, Gold MS, Dbaibo G, Zaraket H, Eid AH, Kobeissy F. Neurological and Neuropsychological Changes Associated with SARS-CoV-2 Infection: New Observations, New Mechanisms. Neuroscientist 2021; 28:552-571. [PMID: 33393420 DOI: 10.1177/1073858420984106] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 infects cells through angiotensin-converting enzyme 2 (ACE2), a ubiquitous receptor that interacts with the virus' surface S glycoprotein. Recent reports show that the virus affects the central nervous system (CNS) with symptoms and complications that include dizziness, altered consciousness, encephalitis, and even stroke. These can immerge as indirect immune effects due to increased cytokine production or via direct viral entry into brain tissue. The latter is possible through neuronal access via the olfactory bulb, hematogenous access through immune cells or directly across the blood-brain barrier (BBB), and through the brain's circumventricular organs characterized by their extensive and highly permeable capillaries. Last, the COVID-19 pandemic increases stress, depression, and anxiety within infected individuals, those in isolation, and high-risk populations like children, the elderly, and health workers. This review surveys the recent updates of CNS manifestations post SARS-CoV-2 infection along with possible mechanisms that lead to them.
Collapse
Affiliation(s)
- Muhammad Ali Haidar
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussam Jourdi
- Department of Biology, University of Balamand, Souk El Gharb, Aley, Lebanon
| | - Zeinab Haj Hassan
- Department of Animal Biology, Faculty of Science, Lebanese University, Beirut, Lebanon
| | - Ohanes Ashekyan
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Manal Fardoun
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Zena Wehbe
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maya Wehbe
- Department of Internal Medicine, Basingstoke & North Hampshire Hospital, Basingstoke, Hampshire, UK
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Shima Shahjouei
- Neurology Department, Neuroscience Institute, Geisinger Health System, Danville, PA, USA
| | - Maya Bizri
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ghassan Dbaibo
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Faculty of Medicine, Hariri School of Nursing, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Faculty of Medicine, Hariri School of Nursing, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Faculty of Medicine, Hariri School of Nursing, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Preissner KT, Fischer S, Deindl E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front Cell Dev Biol 2020; 8:619221. [PMID: 33392206 PMCID: PMC7775424 DOI: 10.3389/fcell.2020.619221] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Upon vascular injury, tissue damage, ischemia, or microbial infection, intracellular material such as nucleic acids and histones is liberated and comes into contact with the vessel wall and circulating blood cells. Such "Danger-associated molecular patterns" (DAMPs) may thus have an enduring influence on the inflammatory defense process that involves leukocyte recruitment and wound healing reactions. While different species of extracellular RNA (exRNA), including microRNAs and long non-coding RNAs, have been implicated to influence inflammatory processes at different levels, recent in vitro and in vivo work has demonstrated a major impact of ribosomal exRNA as a prominent DAMP on various steps of leukocyte recruitment within the innate immune response. This includes the induction of vascular hyper-permeability and vasogenic edema by exRNA via the activation of the "vascular endothelial growth factor" (VEGF) receptor-2 system, as well as the recruitment of leukocytes to the inflamed endothelium, the M1-type polarization of inflammatory macrophages, or the role of exRNA as a pro-thrombotic cofactor to promote thrombosis. Beyond sterile inflammation, exRNA also augments the docking of bacteria to host cells and the subsequent microbial invasion. Moreover, upon vessel occlusion and ischemia, the shear stress-induced release of exRNA initiates arteriogenesis (i.e., formation of natural vessel bypasses) in a multistep process that resembles leukocyte recruitment. Although exRNA can be counteracted for by natural circulating RNase1, under the conditions mentioned, only the administration of exogenous, thermostable, non-toxic RNase1 provides an effective and safe therapeutic regimen for treating the damaging activities of exRNA. It remains to be investigated whether exRNA may also influence viral infections (including COVID-19), e.g., by supporting the interaction of host cells with viral particles and their subsequent invasion. In fact, as a consequence of the viral infection cycle, massive amounts of exRNA are liberated, which can provoke further tissue damage and enhance virus dissemination. Whether the application of RNase1 in this scenario may help to limit the extent of viral infections like COVID-19 and impact on leukocyte recruitment and emigration steps in immune defense in order to limit the extent of associated cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, LMU Munich, Munich, Germany
| |
Collapse
|
9
|
Biswas I, Khan GA. Coagulation Disorders in COVID-19: Role of Toll-like Receptors. J Inflamm Res 2020; 13:823-828. [PMID: 33149655 PMCID: PMC7605922 DOI: 10.2147/jir.s271768] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has spread rapidly throughout the world. The range of the disease is broad but among hospitalized patients with COVID-19 are coagulation disorders, pneumonia, respiratory failure, and acute respiratory distress syndrome (ARDS). The excess production of early response proinflammatory cytokines results in what has been described as a cytokine storm, leading to an increased risk of thrombosis, inflammations, vascular hyperpermeability, multi-organ failure, and eventually death over time. As the pandemic is spreading and the whole picture is not yet clear, we highlight the importance of coagulation disorders in COVID-19 infected subjects and summarize it. COVID-19 infection could induce coagulation disorders leading to clot formation as well as pulmonary embolism with detrimental effects in patient recovery and survival. Coagulation and inflammation are closely related. In this review, we try to establish an association between virus infections associated with innate immune activation, inflammation and coagulation activation.
Collapse
Affiliation(s)
- Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK73104, USA
| | - Gausal A Khan
- Department of Physiology & Physiotherapy, College of Medicine, Nursing and Health Sciences, Fiji National University, Suva, Fiji Islands
| |
Collapse
|
10
|
Bhagat S, Biswas I, Ahmed R, Khan GA. Hypoxia induced up-regulation of tissue factor is mediated through extracellular RNA activated Toll-like receptor 3-activated protein 1 signalling. Blood Cells Mol Dis 2020; 84:102459. [PMID: 32559654 PMCID: PMC7287429 DOI: 10.1016/j.bcmd.2020.102459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/26/2022]
Abstract
Sterile Inflammation (SI), a condition where damage associated molecular patterns (DAMPs) released from dying cells, leads to TLR (Toll-like receptor) activation and triggers hypoxemia in circulation leading to venous thrombosis (VT) through tissue factor (TF) activation, but its importance under acute hypoxia (AH) remains unexplored. Thus, we hypothesized that eRNA released from dying cells under AH activates TF via the TLR3-ERK1/2-AP1 pathway, leading to VT. Animals were exposed to stimulate hypoxia for 0–24 h at standard temperature and humidity. RNaseA and DNase1 were injected immediately before exposure. TLR3 gene silencing was performed through in vivo injection of TLR3 siRNA. 80 μg/kg BW of isolated eRNA and eDNA were injected 6 h prior to sacrifice. Antigens of TF pathway were determined by ELISA and TF activity by a chromogenic assay. AH exposure significantly induced release of SI markers i.e. eRNA, eDNA, HMGB1 and upregulated TLR3, ERK1/2 (Extracellular signal-regulated kinases), AP1 (Activator Protein-1) and TF, whereas RNaseA pre-treatment diminished the effect of AH, thus inhibiting TF expression as well as activity during AH. Hence, we propose a possible mechanism of AH-induced TF activation and thrombosis where RNaseA can become the novel focal point in ameliorating therapy for AH induced thrombosis. Acute hypoxia exposure leads to systemic Sterile Inflammation. eRNA regulates upregulation of TF by activation of TLR3 pathway. RNase A pre-treatment ameliorates effect of acute hypoxia on coagulation.
Collapse
Affiliation(s)
- Saumya Bhagat
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Indranil Biswas
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Rehan Ahmed
- Army Hospital Research and Referral, Delhi, India
| | - Gausal A Khan
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India; Department of Physiology and Physiotherapy, CMNHS, Fiji National University, Suva, Fiji Islands.
| |
Collapse
|
11
|
Zhang XY, Liang HS, Hu JJ, Wan YT, Zhao J, Liang GT, Luo YH, Liang HX, Guo XQ, Li C, Liu WF, Liu KX. Ribonuclease attenuates acute intestinal injury induced by intestinal ischemia reperfusion in mice. Int Immunopharmacol 2020; 83:106430. [PMID: 32279043 DOI: 10.1016/j.intimp.2020.106430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022]
Abstract
Ribonuclease (RNase) reportedly exerts organ-protective effects in several pathological conditions, including ischemia reperfusion (I/R), but whether it can exhibit protective effect on intestinal I/R injury and potential mechanisms remain unknown. The present study was aimed to evaluate the effects of RNase on intestinal I/R injury and explore the underlying mechanisms. Thirty-two wild-type C57BL/6J adult male mice were evenly divided into a sham group, a sham + RNase group, an I/R group and an I/R + RNase group. Intestinal I/R was produced by clamping the superior mesenteric artery for 1 h followed by reperfusion for 2 h. All mice were treated with 3 doses of RNase or the same dosage of normal saline at different points. It was found that intestinal I/R caused significant intestinal injury and an increase in levels of extracellular RNAs (exRNAs). Treatment with RNase significantly reduced the inflammatory cytokine production, inhibited intestinal apoptosis and down-regulated the expression of toll like receptor 3 in intestinal tissues. In conclusion, increased exRNAs may contribute to intestinal I/R injury in adult mice, and RNase treatment during perioperative window is effective for attenuating intestinal I/R injury.
Collapse
Affiliation(s)
- Xi-Yang Zhang
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hai-Su Liang
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing-Juan Hu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Tong Wan
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jin Zhao
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guang-Tao Liang
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Han Luo
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Xuan Liang
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Qing Guo
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Cai Li
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Tielking K, Fischer S, Preissner KT, Vajkoczy P, Xu R. Extracellular RNA in Central Nervous System Pathologies. Front Mol Neurosci 2019; 12:254. [PMID: 31680858 PMCID: PMC6811659 DOI: 10.3389/fnmol.2019.00254] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
The discovery of extracellular RNA (exRNA) has shifted our understanding of the role of RNA in complex cellular functions such as cell-to-cell communication and a variety of pathologies. ExRNAs constitute a heterogenous group of RNAs ranging from small (such as microRNAs) and long non-coding to coding RNAs or ribosomal RNAs. ExRNAs can be liberated from cells in a free form or bound to proteins as well as in association with microvesicles (MVs), exosomes, or apoptotic bodies. Their composition and quantity depend heavily on the cellular or non-cellular component, the origin, and the RNA species being investigated; ribosomal RNA provides the majority of exRNA and miRNAs are predominantly associated with exosomes or MVs. Several studies showed that ribosomal exRNA (rexRNA) constitutes a proinflammatory and prothrombotic alarmin. It is released by various cell types upon inflammatory stimulation and by damaged cells undergoing necrosis or apoptosis and contributes to innate immunity responses. This exRNA has the potential to directly promote the release of cytokines such as tumor necrosis factor factor-α (TNF-α) or interleukin-6 from immune cells, thereby leading to a proinflammatory environment and promoting cardiovascular pathologies. The potential role of exRNA in different pathologies of the central nervous system (CNS) has become of increasing interest in recent years. Although various exRNA species including both ribosomal exRNA as well as miRNAs have been associated with CNS pathologies, their precise roles remain to be further elucidated. In this review, the different entities of exRNA and their postulated roles in CNS pathologies including tumors, vascular pathologies and neuroinflammatory diseases will be discussed. Furthermore, the potential role of exRNAs as diagnostic markers for specific CNS diseases will be outlined, as well as possible treatment strategies addressing exRNA inhibition or interference.
Collapse
Affiliation(s)
- Katharina Tielking
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus T Preissner
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ran Xu
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Veyrat M, Durand S, Classe M, Glavan TM, Oker N, Kapetanakis NI, Jiang X, Gelin A, Herman P, Casiraghi O, Zagzag D, Enot D, Busson P, Vérillaud B. Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget 2018; 7:82580-82593. [PMID: 27791989 PMCID: PMC5347715 DOI: 10.18632/oncotarget.12892] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
In this study, a possible link between the innate immune recognition receptor TLR3 and metabolic reprogramming in Head and Neck carcinoma (HNC) cells was investigated. The effects of TLR3 stimulation/knock-down were assessed under several culture conditions in 4 HNC cell-lines by cell growth assays, targeted metabolomics, and glycolysis assays based on time-resolved analysis of proton release (Seahorse analyzer). The stimulation of TLR3 by its synthetic agonist Poly(A:U) resulted in a faster growth of HNC cells under low foetal calf serum conditions. Targeted analysis of glucose metabolism pathways demonstrated a tendency towards a shift from tricarboxylic acid cycle (Krebs cycle) to glycolysis and anabolic reactions in cells treated with Poly(A:U). Glycolysis assays confirmed that TLR3 stimulation enhanced the capacity of malignant cells to switch from oxidative phosphorylation to extra-mitochondrial glycolysis. We found evidence that HIF-1α is involved in this process: addition of the TLR3 agonist resulted in a higher cell concentration of the HIF-1α protein, even in normoxia, whereas knocking-down TLR3 resulted in a lower concentration, even in hypoxia. Finally, we assessed TLR3 expression by immunohistochemistry in a series of 7 HNSCC specimens and found that TLR3 was detected at higher levels in tumors displaying a hypoxic staining pattern. Overall, our results demonstrate that TLR3 stimulation induces the Warburg effect in HNC cells in vitro, and suggest that TLR3 may play a role in tumor adaptation to hypoxia.
Collapse
Affiliation(s)
- Mathieu Veyrat
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France
| | - Sylvère Durand
- Equipe 11 Labélisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Marion Classe
- Department of Pathology, Lariboisière Hospital, AP-HP, University Paris-Diderot Paris 7, Paris, France
| | | | - Natalie Oker
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France.,Department of Head and Neck surgery, Lariboisière Hospital, AP-HP, University Paris-Diderot Paris 7, Paris, France
| | | | - Xiaojun Jiang
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France
| | - Aurore Gelin
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France
| | - Philippe Herman
- Department of Head and Neck surgery, Lariboisière Hospital, AP-HP, University Paris-Diderot Paris 7, Paris, France
| | - Odile Casiraghi
- Department of Biopathology, Gustave Roussy, Villejuif, France
| | - David Zagzag
- Department of Neuropathology, New York University School of Medicine, New York, NY, USA
| | - David Enot
- Equipe 11 Labélisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Pierre Busson
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France
| | - Benjamin Vérillaud
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France.,Department of Head and Neck surgery, Lariboisière Hospital, AP-HP, University Paris-Diderot Paris 7, Paris, France
| |
Collapse
|
14
|
Abstract
The ability to distinguish between self and nonself is the fundamental basis of the immune system in all organisms. The conceptual distinction between self and nonself, however, breaks down when it comes to endogenous retroviruses and other retroelements. While some retroelements retain the virus-like features including the capacity to replicate and reinvade the host genome, most have become inactive through mutations or host epigenetic silencing. And yet, accumulating evidence suggests that endogenous retroelements, both active and inactive, play important roles not only in pathogenesis of immune disorders, but also in proper functioning of the immune system. This review discusses the recent development in our understanding of the interaction between retroelements and the host innate immune system. In particular, it focuses on the impact of retroelement transcripts on the viral RNA sensors such as Toll-like receptors, RIG-I-like receptors, protein kinase R, and the inflammasomes.
Collapse
Affiliation(s)
- X Mu
- Harvard Medical School, Boston, MA, United States; Boston Children's Hospital, Boston, MA, United States
| | - S Ahmad
- Harvard Medical School, Boston, MA, United States; Boston Children's Hospital, Boston, MA, United States
| | - S Hur
- Harvard Medical School, Boston, MA, United States; Boston Children's Hospital, Boston, MA, United States.
| |
Collapse
|