1
|
Mu W, Duan C, Ao J, Du F, Zhang J. TMT-based proteomics analysis of the blood enriching mechanism of the total Tannins of Gei Herba in mice. Heliyon 2024; 10:e33212. [PMID: 39021933 PMCID: PMC11253055 DOI: 10.1016/j.heliyon.2024.e33212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Lanbuzheng (LBZ) is the traditional seedling medicine in Guizhou, which has the effect of tonifying blood. It has been found that the main active ingredient is tannin, however, the blood-replenishing effect of tannin and its mechanism are still unclear. The study was to explore the mechanisms underlying the therapeutic effects of the total Tannins of Lanbuzheng (LBZT) against anemia in mice. Anemia mice was induced by cyclophosphamide, the effect of LBZT against anemia was determined by analyzing peripheral blood and evaluating organs indexes. Tandem mass tag (TMT)-based quantitative proteomics technology coupled with bioinformatics analysis was then used to identify differentially expressed proteins (DEPs) in spleen. Compared to the model, number of RBCs, PLTs and WBCs, HCT ratio and HGB content were increased, the indexes of thymus, spleen and liver were also increased, after LBZT intervention. A total of 377 DEPs were identified in LBZT group, of which 206 DEPs were significantly up-regulated and 171 DEPs were significantly down-regulated. Bioinformatics analysis showed that hematopoietic function has been restored by activating the complement and coagulation cascade signaling pathways. Results suggest that LBZT exerts it therapeutic effects against anemia by regulating complement and coagulation cascade signaling pathways and provides scientific basis for further mechanistic studies for LBZT.
Collapse
Affiliation(s)
- Wenbi Mu
- Zunyi Product Quality Inspection and Testing Institute, Zunyi, 563000, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Cancan Duan
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Jingwen Ao
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Fanpan Du
- Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Jianyong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
2
|
Wen Y, Shen F, Wu H. Role of C5a and C5aR in doxorubicin-induced cardiomyocyte senescence. Exp Ther Med 2021; 22:1114. [PMID: 34504568 PMCID: PMC8383765 DOI: 10.3892/etm.2021.10548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/11/2021] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (DOX) is an efficacious antineoplastic drug; however, its use is limited due to its cardiotoxicity. Cardiomyocyte senescence is considered to be a key factor in the development of DOX-related cardiomyopathy. Complement component 5a (C5a) and the C5a receptor (C5aR) have been reported to play a key role in the process of cellular senescence. However, to the best of our knowledge, the exact role of C5a and C5aR in cellular senescence in the heart remains largely unknown. Reverse transcription-quantitative (RT-q)PCR and western blot assays were used to analyze the expression levels of C5a and C5aR in H9c2 embryonic rat cardiomyocytes and AC16 human cardiomyocyte-like cells. The cells were treated with DOX and a C5aR antagonist (C5aRA). The expression of TNF-α and IFN-γ was determined using ELISA and western blotting. The levels of reactive oxygen species (ROS) were also measured using ELISA. Cellular senescence was determined using senescence-associated β-galactosidase (SA-β-gal) staining and by analyzing the protein expression levels of p53, p16, p21 and insulin-like growth factor-binding protein 3 (IGFBP3). The expression levels of C5a and C5aR were found to be upregulated during the DOX-induced senescence of H9c2 and AC16 cardiomyocytes. Treatment with C5aRA downregulated TNF-α and IFN-γ expression, in addition to ROS levels. Furthermore, C5aRA prevented DOX-induced cellular senescence and decreased the levels of positive SA-β-gal staining in H9c2 and AC16 cardiomyocytes, in addition to downregulating the expression levels of p53, p16, p21 and IGFBP3. C5aRA also increased the telomere length and telomerase activity in H9c2 and AC16 cardiomyocytes following DOX stimulation. In conclusion, the findings of the present study indicated that C5a and C5aR may play a key role in cardiomyocyte senescence, and treatment with C5aRA may be an effective method for preventing DOX-induced cardiomyocyte aging.
Collapse
Affiliation(s)
- Yahui Wen
- Medical Care Ward, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Feiyan Shen
- Department of Cardiology, QingPu District Central Hospital, Shanghai 201700, P.R. China
| | - Haibin Wu
- Department of Outpatients, Shenzhen Traditional Chinese Medicine Hospital, Guangdong Shenzhen Health Management Center, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
3
|
Nikitin MP, Zelepukin IV, Shipunova VO, Sokolov IL, Deyev SM, Nikitin PI. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nat Biomed Eng 2020; 4:717-731. [PMID: 32632229 DOI: 10.1038/s41551-020-0581-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
The rapid elimination of nanoparticles from the bloodstream by the mononuclear phagocyte system limits the activity of many nanoparticle formulations. Here, we show that inducing a slight and transient depletion of erythrocytes in mice (~5% decrease in haematocrit) by administrating a low dose (1.25 mg kg-1) of allogeneic anti-erythrocyte antibodies increases the circulation half-life of a range of short-circulating and long-circulating nanoparticle formulations by up to 32-fold. Treatment of the animals with anti-erythrocyte antibodies significantly improved the targeting of CD4+ cells in vivo with fluorescent anti-CD4-antibody-conjugated nanoparticles, the magnetically guided delivery of ferrofluid nanoparticles to subcutaneous tumour allografts and xenografts, and the treatment of subcutaneous tumour allografts with magnetically guided liposomes loaded with doxorubicin and magnetite or with clinically approved 'stealthy' doxorubicin liposomes. The transient and partial blocking of the mononuclear phagocyte system may enhance the performance of a wide variety of nanoparticle drugs.
Collapse
Affiliation(s)
| | - Ivan V Zelepukin
- Moscow Institute of Physics and Technology, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victoria O Shipunova
- Moscow Institute of Physics and Technology, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilya L Sokolov
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Holers VM, Banda NK. Complement in the Initiation and Evolution of Rheumatoid Arthritis. Front Immunol 2018; 9:1057. [PMID: 29892280 PMCID: PMC5985368 DOI: 10.3389/fimmu.2018.01057] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/27/2018] [Indexed: 01/03/2023] Open
Abstract
The complement system is a major component of the immune system and plays a central role in many protective immune processes, including circulating immune complex processing and clearance, recognition of foreign antigens, modulation of humoral and cellular immunity, removal of apoptotic and dead cells, and engagement of injury resolving and tissue regeneration processes. In stark contrast to these beneficial roles, however, inadequately controlled complement activation underlies the pathogenesis of human inflammatory and autoimmune diseases, including rheumatoid arthritis (RA) where the cartilage, bone, and synovium are targeted. Recent studies of this disease have demonstrated that the autoimmune response evolves over time in an asymptomatic preclinical phase that is associated with mucosal inflammation. Notably, experimental models of this disease have demonstrated that each of the three major complement activation pathways plays an important role in recognition of injured joint tissue, although the lectin and amplification pathways exhibit particularly impactful roles in the initiation and amplification of damage. Herein, we review the complement system and focus on its multi-factorial role in human patients with RA and experimental murine models. This understanding will be important to the successful integration of the emerging complement therapeutics pipeline into clinical care for patients with RA.
Collapse
Affiliation(s)
| | - Nirmal K. Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|