1
|
Brzozowska M, Jana B, Całka J. Effect of NSAIDs Supplementation on the PACAP-, SP- and GAL-Immunoreactive Neurons in the Porcine Jejunum. Int J Mol Sci 2021; 22:ijms222111689. [PMID: 34769120 PMCID: PMC8583865 DOI: 10.3390/ijms222111689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Side effects associated with nonsteroidal anti-inflammatory drugs (NSAIDs) treatment are a serious limitation of their use in anti-inflammatory therapy. The negative effects of taking NSAIDs include abdominal pain, indigestion nausea as well as serious complications such as bleeding and perforation. The enteric nervous system is involved in regulation of gastrointestinal functions through the release of neurotransmitters. The present study was designed to determine, for the first time, the changes in pituitary adenylate cyclase-activating polypeptide (PACAP), substance P (SP) and galanin (GAL) expression in porcine jejunum after long-term treatment with aspirin, indomethacin and naproxen. The study was performed on 16 immature pigs. The animals were randomly divided into four experimental groups: control, aspirin, indomethacin and naproxen. Control animals were given empty gelatin capsules, while animals in the test groups received selected NSAIDs for 28 days. Next, animals from each group were euthanized. Frozen sections were prepared from collected jejunum and subjected to double immunofluorescence staining. NSAIDs supplementation caused a significant increase in the population of PACAP-, SP- and GAL-containing enteric neurons in the porcine jejunum. Our results suggest the participation of the selected neurotransmitters in regulatory processes of the gastrointestinal function and may indicate the direct toxic effect of NSAIDs on the ENS neurons.
Collapse
Affiliation(s)
- Marta Brzozowska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland;
- Correspondence: ; Tel.: +48-89-523-44-61
| | - Barbara Jana
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland;
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland;
| |
Collapse
|
2
|
Mills EG, Izzi-Engbeaya C, Abbara A, Comninos AN, Dhillo WS. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat Rev Endocrinol 2021; 17:97-113. [PMID: 33273729 DOI: 10.1038/s41574-020-00438-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The bioactive peptides galanin, spexin and kisspeptin have a common ancestral origin and their pathophysiological roles are increasingly the subject of investigation. Evidence suggests that these bioactive peptides play a role in the regulation of metabolism, pancreatic β-cell function, energy homeostasis, mood and behaviour in several species, including zebrafish, rodents and humans. Galanin signalling suppresses insulin secretion in animal models (but not in humans), is potently obesogenic and plays putative roles governing certain evolutionary behaviours and mood modulation. Spexin decreases insulin secretion and has potent anorectic, analgesic, anxiolytic and antidepressive-like effects in animal models. Kisspeptin modulates glucose-stimulated insulin secretion, food intake and/or energy expenditure in animal models and humans. Furthermore, kisspeptin is implicated in the control of reproductive behaviour in animals, modulation of human sexual and emotional brain processing, and has antidepressive and fear-suppressing effects. In addition, galanin-like peptide is a further member of the galaninergic family that plays emerging key roles in metabolism and behaviour. Therapeutic interventions targeting galanin, spexin and/or kisspeptin signalling pathways could therefore contribute to the treatment of conditions ranging from obesity to mood disorders. However, many gaps and controversies exist, which must be addressed before the therapeutic potential of these bioactive peptides can be established.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
3
|
Brzozowska M, Całka J. Review: Occurrence and Distribution of Galanin in the Physiological and Inflammatory States in the Mammalian Gastrointestinal Tract. Front Immunol 2021; 11:602070. [PMID: 33552060 PMCID: PMC7862705 DOI: 10.3389/fimmu.2020.602070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Galanin (GAL) is a broad-spectrum peptide that was first identified 37 years ago. GAL, which acts through three specific receptor subtypes, is one of the most important molecules on an ever-growing list of neurotransmitters. Recent studies indicate that this peptide is commonly present in the gastrointestinal (GI) tract and GAL distribution can be seen in the enteric nervous system (ENS). The function of the GAL in the gastrointestinal tract is, inter alia, to regulate motility and secretion. It should be noted that the distribution of neuropeptides is largely dependent on the research model, as well as the part of the gastrointestinal tract under study. During the development of digestive disorders, fluctuations in GAL levels were observed. The occurrence of GAL largely depends on the stage of the disease, e.g., in porcine experimental colitis GAL secretion is caused by infection with Brachyspira hyodysenteriae. Many authors have suggested that increased GAL presence is related to the involvement of GAL in organ renewal. Additionally, it is tempting to speculate that GAL may be used in the treatment of gastroenteritis. This review aims to present the function of GAL in the mammalian gastrointestinal tract under physiological conditions. In addition, since GAL is undoubtedly involved in the regulation of inflammatory processes, and the aim of this publication is to provide up-to-date knowledge of the distribution of GAL in experimental models of gastrointestinal inflammation, which may help to accurately determine the role of this peptide in inflammatory diseases and its potential future use in the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Marta Brzozowska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
4
|
Brunner SM, Reichmann F, Leitner J, Wölfl S, Bereswill S, Farzi A, Schneider AM, Klieser E, Neureiter D, Emberger M, Heimesaat MM, Weghuber D, Lang R, Holzer P, Kofler B. Galanin receptor 3 attenuates inflammation and influences the gut microbiota in an experimental murine colitis model. Sci Rep 2021; 11:564. [PMID: 33436730 PMCID: PMC7803768 DOI: 10.1038/s41598-020-79456-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
The regulatory (neuro)peptide galanin and its three receptors (GAL1-3R) are involved in immunity and inflammation. Galanin alleviated inflammatory bowel disease (IBD) in rats. However, studies on the galanin receptors involved are lacking. We aimed to determine galanin receptor expression in IBD patients and to evaluate if GAL2R and GAL3R contribute to murine colitis. Immunohistochemical analysis revealed that granulocytes in colon specimens of IBD patients (Crohn's disease and ulcerative colitis) expressed GAL2R and GAL3R but not GAL1R. After colitis induction with 2% dextran sulfate sodium (DSS) for 7 days, mice lacking GAL3R (GAL3R-KO) lost more body weight, exhibited more severe colonic inflammation and aggravated histologic damage, with increased infiltration of neutrophils compared to wild-type animals. Loss of GAL3R resulted in higher local and systemic inflammatory cytokine/chemokine levels. Remarkably, colitis-associated changes to the intestinal microbiota, as assessed by quantitative culture-independent techniques, were most pronounced in GAL3R-KO mice, characterized by elevated numbers of enterobacteria and bifidobacteria. In contrast, GAL2R deletion did not influence the course of colitis. In conclusion, granulocyte GAL2R and GAL3R expression is related to IBD activity in humans, and DSS-induced colitis in mice is strongly affected by GAL3R loss. Consequently, GAL3R poses a novel therapeutic target for IBD.
Collapse
MESH Headings
- Animals
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/microbiology
- Colitis, Ulcerative/therapy
- Crohn Disease/genetics
- Crohn Disease/microbiology
- Crohn Disease/therapy
- Gastrointestinal Microbiome
- Gene Expression
- Humans
- Inflammation
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Targeted Therapy
- Rats
- Receptor, Galanin, Type 3/genetics
- Receptor, Galanin, Type 3/metabolism
- Receptor, Galanin, Type 3/physiology
- Mice
Collapse
Affiliation(s)
- Susanne M Brunner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria.
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria
| | - Julia Leitner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Soraya Wölfl
- Laboratory for Pathology Weger, Emberger, Strubergasse 20, 5020, Salzburg, Austria
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Garystr. 5, 14195, Berlin, Germany
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria
| | - Anna-Maria Schneider
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Eckhard Klieser
- Institute of Pathology, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Michael Emberger
- Laboratory for Pathology Weger, Emberger, Strubergasse 20, 5020, Salzburg, Austria
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Garystr. 5, 14195, Berlin, Germany
| | - Daniel Weghuber
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Roland Lang
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| |
Collapse
|