1
|
Sun N, Wang C, Edwards W, Wang Y, Lu XL, Gu C, McLennan S, Shangaris P, Qi P, Mastronicola D, Scottà C, Lombardi G, Chiappini C. Nanoneedle-Based Electroporation for Efficient Manufacturing of Human Primary Chimeric Antigen Receptor Regulatory T-Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416066. [PMID: 40231643 DOI: 10.1002/advs.202416066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Regulatory T cells (Tregs) play a crucial role in moderating immune responses offering promising therapeutic options for autoimmune diseases and allograft rejection. Genetically engineering Tregs with chimeric antigen receptors (CARs) enhances their targeting specificity and efficacy. With non-viral transfection methods suffering from low efficiency and reduced cell viability, viral transduction is currently the only viable approach for GMP-compliant CAR-Treg production. However, viral transduction raises concerns over immunogenicity, insertional mutagenesis risk, and high costs, which limit clinical scalability. This study introduces a scalable nanoneedle electroporation (nN-EP) platform for GMP-compatible transfection of HLA-A2-specific CAR plasmids into primary human Tregs. The nN-EP system achieves 43% transfection efficiency, outperforming viral transduction at multiplicity of infection 1 by twofold. Importantly, nN-EP preserves Treg viability, phenotype and proliferative capacity. HLA-A2-specific CAR-Tregs generated using nN-EP show specific activation and superior suppressive function compared to polyclonal or virally transduced Tregs in the presence of HLA-A2 expressing antigen presenting cells. These findings underscore the potential of nN-EP as a GMP-suitable method for CAR-Treg production, enabling broader clinical application in immune therapies.
Collapse
Affiliation(s)
- Ningjia Sun
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Cong Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
- Wenzhou Eye Valley Innovation Center, Eye Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - William Edwards
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Yikai Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Xiangrong L Lu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Chenlei Gu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Samuel McLennan
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Panicos Shangaris
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
- School of Life Course & Population Sciences, 10th Floor North Wing, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- Harris Birthright Research Centre for Fetal Medicine, King's College London, London, SE1 7EH, UK
| | - Peng Qi
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Daniela Mastronicola
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Cristiano Scottà
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
- Department of Biosciences, Centre for Inflammation Research and Translational Medicine, Brunel University London, London, UB8 3PH, UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| |
Collapse
|
2
|
Stark H, Ho QY, Cross A, Alessandrini A, Bertaina A, Brennan D, Busque S, Demetris A, Devey L, Fruhwirth G, Fuchs E, Friend P, Geissler E, Guillonneau C, Hester J, Isaacs J, Jaeckel E, Kawai T, Lakkis F, Leventhal J, Levings M, Levitsky J, Lombardi G, Martinez-Llordella M, Mathew J, Moreau A, Reinke P, Riella LV, Sachs D, Fueyo AS, Schreeb K, Sykes M, Tang Q, Thomson A, Tree T, Trzonkowski P, Uchida K, Veale J, Weiner J, Wekerle T, Issa F. Meeting Report: The Sixth International Sam Strober Workshop on Clinical Immune Tolerance. Transplantation 2025; 109:569-579. [PMID: 39800883 DOI: 10.1097/tp.0000000000005311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Affiliation(s)
- Helen Stark
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Quan Yao Ho
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Department of Renal Medicine, Singapore General Hospital, Singapore
| | - Amy Cross
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Daniel Brennan
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stephan Busque
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Palo Alto, CA
| | - Anthony Demetris
- Department of Pathology, Division of Transplantation, University of Pittsburgh, Pittsburgh, PA
| | - Luke Devey
- Quell Therapeutics, Translation and Innovation Hub, London, UK
| | - Gilbert Fruhwirth
- Imaging Therapies and Cancer Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | | | - Peter Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ed Geissler
- Division of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Carole Guillonneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - John Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit and NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Elmar Jaeckel
- Ajmera Transplant Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Tatsuo Kawai
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Boston, MA
| | - Fadi Lakkis
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Joseph Leventhal
- Comprehensive Transplant Center at Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Megan Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Josh Levitsky
- Department of Medicine, Northwestern University, Chicago, IL
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London, London, UK
| | | | - James Mathew
- Departments of Surgery and Microbiology-Immunology, Comprehensive Transplant Center, Northwestern University, Chicago, IL
| | - Aurélie Moreau
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Petra Reinke
- Charité - Universitätsmedizin Berlin, Berlin Center for Advanced Therapies (BeCAT), Berlin, Germany
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - David Sachs
- Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, MA
- Medical School, Harvard University, Boston, MA
- Columbia Center of Translational Immunology, Columbia University Medical Center, New York, NY
| | | | | | - Megan Sykes
- Columbia Center for Translational Immunology, Departments of Medicine, Surgery, and Microbiology and Immunology, Columbia University, New York, NY
| | - Qizhi Tang
- Department of Surgery, Diabetes Center, University of California, San Francisco, CA
| | - Angus Thomson
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Timothy Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Piotr Trzonkowski
- Medical University of Gdansk, Department of Medical Immunology, Gdansk, Poland
| | - Koichiro Uchida
- Juntendo University Center for Immunotherapy and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jeffrey Veale
- Department of Urology, University of California, Los Angeles, CA
| | - Josh Weiner
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Fadi Issa
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Wardell CM, Boardman DA, Levings MK. Harnessing the biology of regulatory T cells to treat disease. Nat Rev Drug Discov 2025; 24:93-111. [PMID: 39681737 DOI: 10.1038/s41573-024-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T (Treg) cells are a suppressive subset of CD4+ T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness Treg cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous Treg cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions. Strategies to deplete Treg cells in cancer are also in active clinical testing. Furthermore, multi-dimensional methods to interrogate the biology of Treg cells are leading to a refined understanding of Treg cell biology and new approaches to harness tissue-specific functions for therapy. A new generation of Treg cell clinical trials is now being fuelled by advances in nanomedicine and synthetic biology, seeking more precise ways to tailor Treg cell function. This Review will discuss recent advances in our understanding of human Treg cell biology, with a focus on mechanisms of action and strategies to assess outcomes of Treg cell-targeted therapies. It highlights results from recent clinical trials aiming to enhance or inhibit Treg cell activity in a variety of diseases, including allergy, transplantation, autoimmunity and cancer, and discusses ongoing strategies to refine these approaches.
Collapse
Affiliation(s)
- Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A Boardman
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Ho QY, Hester J, Issa F. Regulatory cell therapy for kidney transplantation and autoimmune kidney diseases. Pediatr Nephrol 2025; 40:39-52. [PMID: 39278988 PMCID: PMC11584488 DOI: 10.1007/s00467-024-06514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024]
Abstract
Regulatory cell therapies, including regulatory T cells and mesenchymal stromal cells, have shown promise in early clinical trials for reducing immunosuppression burden in transplantation. While regulatory cell therapies may also offer potential for treating autoimmune kidney diseases, data remains sparse, limited mainly to preclinical studies. This review synthesises current literature on the application of regulatory cell therapies in these fields, highlighting the safety and efficacy shown in existing clinical trials. We discuss the need for further clinical validation, optimisation of clinical and immune monitoring protocols, and the challenges of manufacturing and quality control under Good Manufacturing Practice conditions, particularly for investigator-led trials. Additionally, we explore the potential for expanding clinical indications and the unique challenges posed in paediatric applications. Future directions include scaling up production, refining protocols to ensure consistent quality across manufacturing sites, and extending applications to other immune-mediated diseases.
Collapse
Affiliation(s)
- Quan Yao Ho
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK.
| |
Collapse
|
5
|
Kurt AS, Ruiz P, Landmann E, Elgosbi M, Kan Fung T, Kodela E, Londoño MC, Correa DM, Perpiñán E, Lombardi G, Safinia N, Martinez-Llordella M, Sanchez-Fueyo A. Conferring alloantigen specificity to regulatory T cells: A comparative analysis of cell preparations undergoing clinical development in transplantation. Am J Transplant 2025; 25:38-47. [PMID: 39299674 DOI: 10.1016/j.ajt.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Conferring alloantigen-specificity to ex vivo expanded CD4+CD25+FOXP3+ regulatory T cells (Tregs) increases their capacity to counteract effector alloimmune responses following adoptive transfer into transplant recipients. Three strategies are currently undergoing clinical development, which involve the following: (1) expanding Tregs in the presence of donor B cells (donor alloantigen-reactive [DAR] Tregs); (2) culturing Tregs with donor cells in the presence of costimulation blockade (CSB-Tregs); and (3) transducing Tregs with an human leukocyte antigen A2-specific chimeric antigen receptor (CAR-Tregs). Our goal in this study was to assess the relative potency of each of these manufactured Treg products both in vitro and in vivo. When compared with polyclonal Tregs, all 3 manufacturing strategies increased the precursor frequency of alloreactive Tregs, and this was proportional to the overall in vitro immunosuppressive properties of the cell products. Accordingly, CAR-Tregs, which contained the highest frequency of donor-reactive Tregs, exhibited the strongest suppressive effects on a cell-per-cell basis. Similarly, in an in vivo mouse model of graft-vs-host disease, infusion of CAR-Tregs conferred a significantly longer recipient survival than any other Treg product. Our results highlighting the alloantigen-reactivity and associated immunosuppressive properties of different manufactured Treg products have implications for the mechanistic interpretation of currently ongoing clinical trials in transplantation.
Collapse
Affiliation(s)
- Ada Sera Kurt
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Paula Ruiz
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Emmanuelle Landmann
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Marwa Elgosbi
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Tsz Kan Fung
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Elisavet Kodela
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | | | - Diana Marin Correa
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Elena Perpiñán
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Niloufar Safinia
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Marc Martinez-Llordella
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK; Quell Therapeutics, London, UK
| | - Alberto Sanchez-Fueyo
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK.
| |
Collapse
|
6
|
Alvarez-Salazar EK, Cortés-Hernández A, Arteaga-Cruz S, Soldevila G. Induced regulatory T cells as immunotherapy in allotransplantation and autoimmunity: challenges and opportunities. J Leukoc Biol 2024; 116:947-965. [PMID: 38630873 DOI: 10.1093/jleuko/qiae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Regulatory T cells play a crucial role in the homeostasis of the immune response. Regulatory T cells are mainly generated in the thymus and are characterized by the expression of Foxp3, which is considered the regulatory T-cell master transcription factor. In addition, regulatory T cells can be induced from naive CD4+ T cells to express Foxp3 under specific conditions both in vivo (peripheral regulatory T cells) and in vitro (induced regulatory T cells). Both subsets of thymic regulatory T cells and peripheral regulatory T cells are necessary for the establishment of immune tolerance to self and non-self antigens. Although it has been postulated that induced regulatory T cells may be less stable compared to regulatory T cells, mainly due to epigenetic differences, accumulating evidence in animal models shows that induced regulatory T cells are stable in vivo and can be used for the treatment of inflammatory disorders, including autoimmune diseases and allogeneic transplant rejection. In this review, we describe the biological characteristics of induced regulatory T cells, as well as the key factors involved in induced regulatory T-cell transcriptional, metabolic, and epigenetic regulation, and discuss recent advances for de novo generation of stable regulatory T cells and their use as immunotherapeutic tools in different experimental models. Moreover, we discuss the challenges and considerations for the application of induced regulatory T cells in clinical trials and describe the new approaches proposed to achieve in vivo stability, including functional or metabolic reprogramming and epigenetic editing.
Collapse
Affiliation(s)
- Evelyn Katy Alvarez-Salazar
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Arimelek Cortés-Hernández
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Saúl Arteaga-Cruz
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Gloria Soldevila
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| |
Collapse
|
7
|
Chung JB, Brudno JN, Borie D, Kochenderfer JN. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat Rev Immunol 2024; 24:830-845. [PMID: 38831163 DOI: 10.1038/s41577-024-01035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Infusion of T cells engineered to express chimeric antigen receptors (CARs) that target B cells has proven to be a successful treatment for B cell malignancies. This success inspired the development of CAR T cells to selectively deplete or modulate the aberrant immune responses that underlie autoimmune disease. Promising results are emerging from clinical trials of CAR T cells targeting the B cell protein CD19 in patients with B cell-driven autoimmune diseases. Further approaches are being designed to extend the application and improve safety of CAR T cell therapy in the setting of autoimmunity, including the use of chimeric autoantibody receptors to selectively deplete autoantigen-specific B cells and the use of regulatory T cells engineered to express antigen-specific CARs for targeted immune modulation. Here, we highlight important considerations, such as optimal target cell populations, CAR construct design, acceptable toxicities and potential for lasting immune reset, that will inform the eventual safe adoption of CAR T cell therapy for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
| | - Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - James N Kochenderfer
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
9
|
Chen B, Liu J. Prospects and challenges of CAR-T in the treatment of ovarian cancer. Int Immunopharmacol 2024; 133:112112. [PMID: 38640714 DOI: 10.1016/j.intimp.2024.112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Ovarian cancer ranks as the seventh most prevalent cancer among women and is considered the most lethal gynecological malignancy on a global scale. The absence of reliable screening techniques, coupled with the insidious onset of nonspecific symptoms, often results in a delayed diagnosis, typically at an advanced stage characterized by peritoneal involvement. Management of advanced tumors typically involves a combination of chemotherapy and cytoreductive surgery. However, the therapeutic arsenal for ovarian cancer patients remains limited, highlighting the unmet need for precise, targeted, and sustained-release pharmacological agents. Genetically engineered T cells expressing chimeric antigen receptors (CARs) represent a promising novel therapeutic modality that selectively targets specific antigens, demonstrating robust and enduring antitumor responses in numerous patients. CAR T cell therapy has exhibited notable efficacy in hematological malignancies and is currently under investigation for its potential in treating various solid tumors, including ovarian cancer. Currently, numerous researchers are engaged in the development of novel CAR-T cells designed to target ovarian cancer, with subsequent evaluation of these candidate cells in preclinical studies. Given the ability of chimeric antigen receptor (CAR) expressing T cells to elicit potent and long-lasting anti-tumor effects, this therapeutic approach holds significant promise for the treatment of ovarian cancer. This review article examines the utilization of CAR-T cells in the context of ovarian cancer therapy.
Collapse
Affiliation(s)
- Biqing Chen
- Harbin Medical University, Harbin, Heilongjiang, China.
| | | |
Collapse
|
10
|
Minina EP, Dianov DV, Sheetikov SA, Bogolyubova AV. CAR Cells beyond Classical CAR T Cells: Functional Properties and Prospects of Application. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:765-783. [PMID: 38880641 DOI: 10.1134/s0006297924050018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 06/18/2024]
Abstract
Chimeric antigen receptors (CARs) are genetically engineered receptors that recognize antigens and activate signaling cascades in a cell. Signal recognition and transmission are mediated by the CAR domains derived from different proteins. T cells carrying CARs against tumor-associated antigens have been used in the development of the CAR T cell therapy, a new approach to fighting malignant neoplasms. Despite its high efficacy in the treatment of oncohematological diseases, CAR T cell therapy has a number of disadvantages that could be avoided by using other types of leukocytes as effector cells. CARs can be expressed in a wide range of cells of adaptive and innate immunity with the emergence or improvement of cytotoxic properties. This review discusses the features of CAR function in different types of immune cells, with a particular focus on the results of preclinical and clinical efficacy studies and the safety of potential CAR cell products.
Collapse
Affiliation(s)
- Elizaveta P Minina
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Dmitry V Dianov
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Saveliy A Sheetikov
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Apollinariya V Bogolyubova
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia.
| |
Collapse
|
11
|
Tuomela K, Levings MK. Genetic engineering of regulatory T cells for treatment of autoimmune disorders including type 1 diabetes. Diabetologia 2024; 67:611-622. [PMID: 38236408 DOI: 10.1007/s00125-023-06076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/07/2023] [Indexed: 01/19/2024]
Abstract
Suppression of pathogenic immune responses is a major goal in the prevention and treatment of type 1 diabetes. Adoptive cell therapy using regulatory T cells (Tregs), a naturally suppressive immune subset that is often dysfunctional in type 1 diabetes, is a promising approach to achieving localised and specific immune suppression in the pancreas or site of islet transplant. However, clinical trials testing administration of polyclonal Tregs in recent-onset type 1 diabetes have observed limited efficacy despite an excellent safety profile. Several barriers to efficacy have been identified, including lack of antigen specificity, low cell persistence post-administration and difficulty in generating sufficient cell numbers. Fortunately, the emergence of advanced gene editing techniques has opened the door to new strategies to engineer Tregs with improved specificity and function. These strategies include the engineering of FOXP3 expression to produce a larger source of suppressive cells for infusion, expressing T cell receptors or chimeric antigen receptors to generate antigen-specific Tregs and improving Treg survival by targeting cytokine pathways. Although these approaches are being applied in a variety of autoimmune and transplant contexts, type 1 diabetes presents unique opportunities and challenges for the genetic engineering of Tregs for adoptive cell therapy. Here we discuss the role of Tregs in type 1 diabetes pathogenesis and the application of Treg engineering in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
12
|
Eskandari SK, Daccache A, Azzi JR. Chimeric antigen receptor T reg therapy in transplantation. Trends Immunol 2024; 45:48-61. [PMID: 38123369 DOI: 10.1016/j.it.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
In the quest for more precise and effective organ transplantation therapies, chimeric antigen receptor (CAR) regulatory T cell (Treg) therapies represent a potential cutting-edge advance. This review comprehensively analyses CAR Tregs and how they may address important drawbacks of polyclonal Tregs and conventional immunosuppressants. We examine a growing body of preclinical findings of CAR Treg therapy in transplantation, discuss CAR Treg design specifics, and explore established and attractive new targets in transplantation. In addition, we explore present impediments where future studies will be necessary to determine the efficacy of CAR Tregs in reshaping alloimmune responses and transplant microenvironments to reduce reliance on chemical immunosuppressants. Overall, ongoing studies and trials are crucial for understanding the full scope of CAR Treg therapy in transplantation.
Collapse
Affiliation(s)
- Siawosh K Eskandari
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Andrea Daccache
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Bioscience Education and Research (UFR Biosciences), Claude Bernard University Lyon 1, Lyon, France
| | - Jamil R Azzi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
14
|
Tuomela K, Salim K, Levings MK. Eras of designer Tregs: Harnessing synthetic biology for immune suppression. Immunol Rev 2023; 320:250-267. [PMID: 37522861 DOI: 10.1111/imr.13254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Since their discovery, CD4+ CD25hi FOXP3hi regulatory T cells (Tregs) have been firmly established as a critical cell type for regulating immune homeostasis through a plethora of mechanisms. Due to their immunoregulatory power, delivery of polyclonal Tregs has been explored as a therapy to dampen inflammation in the settings of transplantation and autoimmunity. Evidence shows that Treg therapy is safe and well-tolerated, but efficacy remains undefined and could be limited by poor persistence in vivo and lack of antigen specificity. With the advent of new genetic engineering tools, it is now possible to create bespoke "designer" Tregs that not only overcome possible limitations of polyclonal Tregs but also introduce new features. Here, we review the development of designer Tregs through the perspective of three 'eras': (1) the era of FOXP3 engineering, in which breakthroughs in the biological understanding of this transcription factor enabled the conversion of conventional T cells to Tregs; (2) the antigen-specificity era, in which transgenic T-cell receptors and chimeric antigen receptors were introduced to create more potent and directed Treg therapies; and (3) the current era, which is harnessing advanced genome-editing techniques to introduce and refine existing and new engineering approaches. The year 2022 marked the entry of "designer" Tregs into the clinic, with exciting potential for application and efficacy in a wide variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Requejo Cier CJ, Valentini N, Lamarche C. Unlocking the potential of Tregs: innovations in CAR technology. Front Mol Biosci 2023; 10:1267762. [PMID: 37900916 PMCID: PMC10602912 DOI: 10.3389/fmolb.2023.1267762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Regulatory T cells (Tregs) adoptive immunotherapy is emerging as a viable treatment option for both autoimmune and alloimmune diseases. However, numerous challenges remain, including limitations related to cell number, availability of target-specific cells, stability, purity, homing ability, and safety concerns. To address these challenges, cell engineering strategies have emerged as promising solutions. Indeed, it has become feasible to increase Treg numbers or enhance their stability through Foxp3 overexpression, post-translational modifications, or demethylation of the Treg-specific demethylated region (TSDR). Specificity can be engineered by the addition of chimeric antigen receptors (CARs), with new techniques designed to fine-tune specificity (tandem chimeric antigen receptors, universal chimeric antigen receptors, synNotch chimeric antigen receptors). The introduction of B-cell targeting antibody receptor (BAR) Tregs has paved the way for effective regulation of B cells and plasma cells. In addition, other constructs have emerged to enhance Tregs activation and function, such as optimized chimeric antigen receptors constructs and the use of armour proteins. Chimeric antigen receptor expression can also be better regulated to limit tonic signaling. Furthermore, various opportunities exist for enhancing the homing capabilities of CAR-Tregs to improve therapy outcomes. Many of these genetic modifications have already been explored for conventional CAR-T therapy but need to be further considered for CAR-Tregs therapies. This review highlights innovative CAR-engineering strategies that have the potential to precisely and efficiently manage immune responses in autoimmune diseases and improve transplant outcomes. As these strategies are further explored and optimized, CAR-Treg therapies may emerge as powerful tools for immune intervention.
Collapse
Affiliation(s)
- Christopher J. Requejo Cier
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Valentini
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Caroline Lamarche
- Department of Medicine, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
16
|
Sun MY, Li W, Chen W. Chimeric antigen receptor T cell and regulatory T cell therapy in non-oncology diseases: A narrative review of studies from 2017 to 2023. Hum Vaccin Immunother 2023; 19:2251839. [PMID: 37814513 PMCID: PMC10566417 DOI: 10.1080/21645515.2023.2251839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/10/2023] [Indexed: 10/11/2023] Open
Abstract
Recently, the remarkable success of chimeric antigen receptor T cell (CAR-T) therapy in treating certain tumors has led to numerous studies exploring its potential application to treat non-oncology diseases. This review discusses the progress and evolution of CAR-T cell therapies for treating non-oncology diseases over the past 5 years. Additionally, we summarize the advantages and disadvantages of CAR-T cell therapy in treating non-oncological diseases and identify any difficulties that should be overcome. After conducting an in-depth analysis of the most recent studies on CAR-T technology, we discuss the key elements of CAR-T therapy, such as developing an effective CAR design for non-oncological diseases, controlling the rate and duration of response, and implementing safety measures to reduce toxicity. These studies provide new insights into different delivery strategies, the discovery of new target molecules, and improvements in the safety of CAR-T therapy for non-oncological diseases.
Collapse
Affiliation(s)
- Ming-Yao Sun
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
- Department of Clinical Nutrition, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Wei Chen
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
17
|
Mazinani M, Rahbarizadeh F. New cell sources for CAR-based immunotherapy. Biomark Res 2023; 11:49. [PMID: 37147740 PMCID: PMC10163725 DOI: 10.1186/s40364-023-00482-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, in which a patient's own T lymphocytes are engineered to recognize and kill cancer cells, has achieved striking success in some hematological malignancies in preclinical and clinical trials, resulting in six FDA-approved CAR-T products currently available in the market. Despite impressive clinical outcomes, concerns about treatment failure associated with low efficacy or high cytotoxicity of CAR-T cells remain. While the main focus has been on improving CAR-T cells, exploring alternative cellular sources for CAR generation has garnered growing interest. In the current review, we comprehensively evaluated other cell sources rather than conventional T cells for CAR generation.
Collapse
Affiliation(s)
- Marzieh Mazinani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
18
|
McCallion O, Bilici M, Hester J, Issa F. Regulatory T-cell therapy approaches. Clin Exp Immunol 2023; 211:96-107. [PMID: 35960852 PMCID: PMC10019137 DOI: 10.1093/cei/uxac078] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs) have enormous therapeutic potential to treat a variety of immunopathologies characterized by aberrant immune activation. Adoptive transfer of ex vivo expanded autologous Tregs continues to progress through mid- to late-phase clinical trials in several disease spaces and has generated promising preliminary safety and efficacy signals to date. However, the practicalities of this strategy outside of the clinical trial setting remain challenging. Here, we review the current landscape of regulatory T-cell therapy, considering emergent approaches and technologies presenting novel ways to engage Tregs, and reflect on the progress necessary to deliver their therapeutic potential to patients.
Collapse
Affiliation(s)
- Oliver McCallion
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Merve Bilici
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Correspondence. Fadi Issa, Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
19
|
MacDonald KN, Salim K, Levings MK. Manufacturing next-generation regulatory T-cell therapies. Curr Opin Biotechnol 2022; 78:102822. [PMID: 36332342 DOI: 10.1016/j.copbio.2022.102822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Regulatory T-cell (Treg) therapy has shown promise in treating autoimmune diseases, transplant rejection, or graft-versus-host disease in early clinical trials. These trials have demonstrated that cell therapy using polyclonal Tregs is feasible and safe, however, the field has been limited by the lack of polyclonal cell specificity and consequent large cell numbers required, and the difficulty in generating autologous products for some patients. Thus, the field is moving toward 'next generation' Treg cell therapies that include genetic modification strategies to engineer specificity and/or modify function, as well as methods to generate Tregs in vitro. In this review, we describe how genetic modification of Tregs using viral transduction or gene editing may be incorporated into Treg manufacturing protocols. We also describe how Tregs may be generated via FOXP3 gene editing or overexpression, or by differentiation from pluripotent stem cells. The application of these various types of engineered Tregs is discussed.
Collapse
Affiliation(s)
- Katherine N MacDonald
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Kevin Salim
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Megan K Levings
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Volpe A, Adusumilli PS, Schöder H, Ponomarev V. Imaging cellular immunotherapies and immune cell biomarkers: from preclinical studies to patients. J Immunother Cancer 2022; 10:jitc-2022-004902. [PMID: 36137649 PMCID: PMC9511655 DOI: 10.1136/jitc-2022-004902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 01/26/2023] Open
Abstract
Cellular immunotherapies have emerged as a successful therapeutic approach to fight a wide range of human diseases, including cancer. However, responses are limited to few patients and tumor types. An in-depth understanding of the complexity and dynamics of cellular immunotherapeutics, including what is behind their success and failure in a patient, the role of other immune cell types and molecular biomarkers in determining a response, is now paramount. As the cellular immunotherapy arsenal expands, whole-body non-invasive molecular imaging can shed a light on their in vivo fate and contribute to the reliable assessment of treatment outcome and prediction of therapeutic response. In this review, we outline the non-invasive strategies that can be tailored toward the molecular imaging of cellular immunotherapies and immune-related components, with a focus on those that have been extensively tested preclinically and are currently under clinical development or have already entered the clinical trial phase. We also provide a critical appraisal on the current role and consolidation of molecular imaging into clinical practice.
Collapse
Affiliation(s)
- Alessia Volpe
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
21
|
Gille I, Claas FHJ, Haasnoot GW, Heemskerk MHM, Heidt S. Chimeric Antigen Receptor (CAR) Regulatory T-Cells in Solid Organ Transplantation. Front Immunol 2022; 13:874157. [PMID: 35720402 PMCID: PMC9204347 DOI: 10.3389/fimmu.2022.874157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Solid organ transplantation is the treatment of choice for various end-stage diseases, but requires the continuous need for immunosuppression to prevent allograft rejection. This comes with serious side effects including increased infection rates and development of malignancies. Thus, there is a clinical need to promote transplantation tolerance to prevent organ rejection with minimal or no immunosuppressive treatment. Polyclonal regulatory T-cells (Tregs) are a potential tool to induce transplantation tolerance, but lack specificity and therefore require administration of high doses. Redirecting Tregs towards mismatched donor HLA molecules by modifying these cells with chimeric antigen receptors (CAR) would render Tregs far more effective at preventing allograft rejection. Several studies on HLA-A2 specific CAR Tregs have demonstrated that these cells are highly antigen-specific and show a superior homing capacity to HLA-A2+ allografts compared to polyclonal Tregs. HLA-A2 CAR Tregs have been shown to prolong survival of HLA-A2+ allografts in several pre-clinical humanized mouse models. Although promising, concerns about safety and stability need to be addressed. In this review the current research, obstacles of CAR Treg therapy, and its potential future in solid organ transplantation will be discussed.
Collapse
Affiliation(s)
- Ilse Gille
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,Eurotransplant Reference Laboratory, Leiden University Medical Center, Leiden, Netherlands
| | - Geert W Haasnoot
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,Eurotransplant Reference Laboratory, Leiden University Medical Center, Leiden, Netherlands
| | | | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,Eurotransplant Reference Laboratory, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
22
|
Hossian AKMN, Hackett CS, Brentjens RJ, Rafiq S. Multipurposing CARs: Same engine, different vehicles. Mol Ther 2022; 30:1381-1395. [PMID: 35151842 PMCID: PMC9077369 DOI: 10.1016/j.ymthe.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
T cells genetically engineered to recognize and eliminate tumor cells through synthetic chimeric antigen receptors (CARs) have demonstrated remarkable clinical efficacy against B cell leukemia over the past decade. This therapy is a form of highly personalized medicine that involves genetically modifying a patient's T cells to recognize and kill cancer cells. With the FDA approval of 5 CAR T cell products, this approach has been validated as a powerful new drug in the therapeutic armamentarium against cancer. Researchers are now studying how to expand this technology beyond its use in conventional polyclonal αβ T cells to address limitations to the current therapy in cancer and applications beyond it. Considering the specific characteristics of immune cell from diverse lineages, several preclinical and clinical studies are under way to assess the advantages of CAR-redirected function in these cells and apply the lessons learned from CAR T cell therapy in cancer to other diseases.
Collapse
Affiliation(s)
- A K M Nawshad Hossian
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Christopher S Hackett
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Renier J Brentjens
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Aghajanian H, Rurik JG, Epstein JA. CAR-based therapies: opportunities for immuno-medicine beyond cancer. Nat Metab 2022; 4:163-169. [PMID: 35228742 PMCID: PMC9947862 DOI: 10.1038/s42255-022-00537-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/20/2022] [Indexed: 02/01/2023]
Abstract
One of the most exciting new therapies for cancer involves the use of autologous T cells that are engineered to recognize and destroy cancerous cells. Patients with previously untreatable B cell leukaemias and lymphomas have been cured, and efforts are underway to extend this success to other tumours. Here, we discuss recent studies and emerging research aimed to extend this approach beyond oncology in areas such as cardiometabolic disorders, autoimmunity, fibrosis and senescence. We also summarize new technologies that may help to reduce the cost and increase access to related forms of immunotherapy.
Collapse
Affiliation(s)
- Haig Aghajanian
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Joel G. Rurik
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
24
|
Boardman DA, Levings MK. Emerging strategies for treating autoimmune disorders with genetically modified Treg cells. J Allergy Clin Immunol 2022; 149:1-11. [PMID: 34998473 DOI: 10.1016/j.jaci.2021.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022]
Abstract
Gene editing of living cells is a cornerstone of present-day medical research that has enabled scientists to address fundamental biologic questions and identify novel strategies to treat diseases. The ability to manipulate adoptive cell therapy products has revolutionized cancer immunotherapy and promises similar results for the treatment of autoimmune diseases, inflammatory disorders, and transplant rejection. Clinical trials have recently deemed polyclonal regulatory T (Treg) cell therapy to be a safe therapeutic option, but questions remain regarding the efficacy of this approach. In this review, we discuss how gene editing technologies are being applied to transform the future of Treg cell therapy, focusing on the preclinical strategies that are currently being investigated to enhance the efficacy, function, and survival of human Treg cells. We explore approaches that may be used to generate immunoregulatory cells ex vivo, detail emerging strategies that are being used to modify these cells (such as using chimeric antigen receptors to confer antigen specificity), and outline concepts that have been explored to repurpose conventional T cells to target and destroy autoreactive and alloreactive lymphocytes. We also describe the key hurdles that currently hinder the clinical adoption of Treg cell therapy and propose potential future avenues of research for this field.
Collapse
Affiliation(s)
- Dominic A Boardman
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|