1
|
van der Woude D, Toes REM. Immune response to post-translationally modified proteins in rheumatoid arthritis: what makes it special? Ann Rheum Dis 2024; 83:838-846. [PMID: 38378236 DOI: 10.1136/ard-2023-224103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Rheumatoid arthritis (RA) exhibits common characteristics with numerous other autoimmune diseases, including the presence of susceptibility genes and the presence of disease-specific autoantibodies. Anti-citrullinated protein antibodies (ACPA) are the hallmarking autoantibodies in RA and the anti-citrullinated protein immune response has been implicated in disease pathogenesis. Insight into the immunological pathways leading to anti-citrullinated protein immunity will not only aid understanding of RA pathogenesis, but may also contribute to elucidation of similar mechanisms in other autoantibody-positive autoimmune diseases. Similarly, lessons learnt in other human autoimmune diseases might be relevant to understand potential drivers of RA. In this review, we will summarise several novel insights into the biology of the anti-citrullinated protein response and their clinical associations that have been obtained in recent years. These insights include the identification of glycans in the variable domain of ACPA, the realisation that ACPA are polyreactive towards other post-translational modifications on proteins, as well as new awareness of the contributing role of mucosal sites to the development of the ACPA response. These findings will be mirrored to emerging concepts obtained in other human (autoimmune) disease characterised by disease-specific autoantibodies. Together with an updated understanding of genetic and environmental risk factors and fresh perspectives on how the microbiome could contribute to antibody formation, these advancements coalesce to a progressively clearer picture of the B cell reaction to modified antigens in the progression of RA.
Collapse
Affiliation(s)
| | - René E M Toes
- Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| |
Collapse
|
2
|
Voogd L, Drittij AM, Dingenouts CK, Franken KL, Unen VV, van Meijgaarden KE, Ruibal P, Hagedoorn RS, Leitner JA, Steinberger P, Heemskerk MH, Davis MM, Scriba TJ, Ottenhoff TH, Joosten SA. Mtb HLA-E-tetramer-sorted CD8 + T cells have a diverse TCR repertoire. iScience 2024; 27:109233. [PMID: 38439958 PMCID: PMC10909886 DOI: 10.1016/j.isci.2024.109233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
HLA-E molecules can present self- and pathogen-derived peptides to both natural killer (NK) cells and T cells. T cells that recognize HLA-E peptides via their T cell receptor (TCR) are termed donor-unrestricted T cells due to restricted allelic variation of HLA-E. The composition and repertoire of HLA-E TCRs is not known so far. We performed TCR sequencing on CD8+ T cells from 21 individuals recognizing HLA-E tetramers (TMs) folded with two Mtb-HLA-E-restricted peptides. We sorted HLA-E Mtb TM+ and TM- CD8+ T cells directly ex vivo and performed bulk RNA-sequencing and single-cell TCR sequencing. The identified TCR repertoire was diverse and showed no conservation between and within individuals. TCRs selected from our single-cell TCR sequencing data could be activated upon HLA-E/peptide stimulation, although not robust, reflecting potentially weak interactions between HLA-E peptide complexes and TCRs. Thus, HLA-E-Mtb-specific T cells have a highly diverse TCR repertoire.
Collapse
Affiliation(s)
- Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne M.H.F. Drittij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Calinda K.E. Dingenouts
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Kees L.M.C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Vincent van Unen
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Renate S. Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith A. Leitner
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Mark M. Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Palo Alto, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Tom H.M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|