1
|
Stanković M, Skaro Bogojevic S, Kljun J, Milanović Ž, Stevanović NL, Lazic J, Vojnovic S, Turel I, Djuran MI, Glišić BĐ. Silver(I) complexes with voriconazole as promising anti-Candida agents. J Inorg Biochem 2024; 256:112572. [PMID: 38691971 DOI: 10.1016/j.jinorgbio.2024.112572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV-Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1-3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02-1.05 μM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a - 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.
Collapse
Affiliation(s)
- Mia Stanković
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Sanja Skaro Bogojevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Jakob Kljun
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Žiko Milanović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nevena Lj Stevanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Jelena Lazic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Sandra Vojnovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Iztok Turel
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
| | - Biljana Đ Glišić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
2
|
Moriiwa Y, Shoji A, Shibusawa Y, Yanagida A. Elution behavior of drugs in high-speed counter-current chromatography using on-column complexation with metal ions. ANAL SCI 2024; 40:1121-1128. [PMID: 38592653 DOI: 10.1007/s44211-024-00536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 04/10/2024]
Abstract
In this study, determination of (nitrogen containing) drugs by on-column complexation with metal ions in high-speed counter-current chromatography (HSCCC) was investigated. Bromazepam (BMP) was strongly retained in the organic upper stationary phase (UP) of the two-phase solvent system composed of tert-butyl methyl ether-acetonitrile-water (2:2:3, v/v/v) by eluting the aqueous lower mobile phase (LP) at a flow rate of 2 mL min-1. On the other hand, BMP (200 µg mL-1) was eluted faster without retention to the organic UP with the two-phase system containing 100 μg mL-1 of copper ions (CuCl2) because a very polar BMP-Cu2+ complex was immediately formed in the aqueous LP. The dramatic change in the retention behavior of BMP resulted from on-column complexation. The on-column complexation in HSCCC was further investigated for five (nitrogen containing) drugs and seven metal ions. In the result, tizanidine and phentolamine formed complexes with Al3+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+, ambroxol formed complexes with Al3+, Fe2+, and Cu2+, but voriconazole formed no complexes with all metal ions tested.
Collapse
Affiliation(s)
- Yukiko Moriiwa
- Department of Biomedical Analysis, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Atsushi Shoji
- Department of Biomedical Analysis, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yoichi Shibusawa
- Department of Biomedical Analysis, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akio Yanagida
- Department of Biomedical Analysis, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
3
|
Stanković M, Kljun J, Stevanović NL, Lazic J, Skaro Bogojevic S, Vojnovic S, Zlatar M, Nikodinovic-Runic J, Turel I, Djuran MI, Glišić BĐ. Silver(I) complexes containing antifungal azoles: significant improvement of the anti- Candida potential of the azole drug after its coordination to the silver(I) ion. Dalton Trans 2024; 53:2218-2230. [PMID: 38193719 DOI: 10.1039/d3dt03010e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Inspired by the emergence of resistance to currently available antifungal therapy and by the great potential of metal complexes for the treatment of various diseases, we synthesized three new silver(I) complexes containing clinically used antifungal azoles as ligands, [Ag(ecz)2]SbF6 (1, ecz is econazole), {[Ag(vcz)2]SbF6}n (2, vcz is voriconazole), and [Ag(ctz)2]SbF6 (3, ctz is clotrimazole), and investigated their antimicrobial properties. The synthesized complexes were characterized by mass spectrometry, IR, UV-vis and 1H NMR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction analysis. In the mononuclear complexes 1 and 3 with ecz and ctz, respectively, the silver(I) ion has the expected linear geometry, in which the azoles are monodentately coordinated to this metal center through the N3 imidazole nitrogen atom. In contrast, the vcz-containing complex 2 has a polymeric structure in the solid state in which the silver(I) ions are coordinated by four nitrogen atoms in a distorted tetrahedral geometry. DFT calculations were done to predict the most favorable structures of the studied complexes in DMSO solution. All the studied silver(I) complexes have shown excellent antifungal and good to moderate antibacterial activities with minimal inhibitory concentration (MIC) values in the ranges of 0.01-27.1 and 2.61-47.9 μM on the selected panel of fungi and bacteria, respectively. Importantly, the complexes 1-3 have exhibited a significantly improved antifungal activity compared to the free azoles, with the most pronounced effect observed in the case of complex 2 compared to the parent vcz against Candida glabrata with an increase of activity by five orders of magnitude. Moreover, the silver(I)-azole complexes 2 and 3 significantly inhibited the formation of C. albicans hyphae and biofilms at the subinhibitory concentration of 50% MIC. To investigate the impact of the complex 3 more thoroughly on Candida pathogenesis, its effect on the adherence of C. albicans to A549 cells (human adenocarcinoma alveolar basal epithelial cells), as an initial step of the invasion of host cells, was studied.
Collapse
Affiliation(s)
- Mia Stanković
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jakob Kljun
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Nevena Lj Stevanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jelena Lazic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Sanja Skaro Bogojevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Sandra Vojnovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Matija Zlatar
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Iztok Turel
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
| | - Biljana Đ Glišić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
4
|
Cortat Y, Zobi F. Resurgence and Repurposing of Antifungal Azoles by Transition Metal Coordination for Drug Discovery. Pharmaceutics 2023; 15:2398. [PMID: 37896159 PMCID: PMC10609764 DOI: 10.3390/pharmaceutics15102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Coordination compounds featuring one or more antifungal azole (AA) ligands constitute an interesting family of candidate molecules, given their medicinal polyvalence and the viability of drug complexation as a strategy to improve and repurpose available medications. This review reports the work performed in the field of coordination derivatives of AAs synthesized for medical purposes by discussing the corresponding publications and emphasizing the most promising compounds discovered so far. The resulting overview highlights the efficiency of AAs and their metallic species, as well as the potential still lying in this research area.
Collapse
Affiliation(s)
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| |
Collapse
|
5
|
Chiral metal–organic frameworks based on asymmetric synthetic strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Troyano J, Zamora F, Delgado S. Copper(i)–iodide cluster structures as functional and processable platform materials. Chem Soc Rev 2021; 50:4606-4628. [DOI: 10.1039/d0cs01470b] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review provides a complete overview of the progress towards implementation of CuI-nanoclusters in functional materials and devices.
Collapse
Affiliation(s)
- Javier Troyano
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Yoshida
- Sakyo-ku
- Kyoto 606-8501
- Japan
| | - Félix Zamora
- Departamento de Química Inorgánica, Facultad de Ciencias
- Universidad Autónoma de Madrid
- Madrid 28049
- Spain
- Institute for Advanced Research in Chemical Sciences
| | - Salomé Delgado
- Departamento de Química Inorgánica, Facultad de Ciencias
- Universidad Autónoma de Madrid
- Madrid 28049
- Spain
- Institute for Advanced Research in Chemical Sciences
| |
Collapse
|
7
|
Copper-based metal coordination complexes with Voriconazole ligand: Syntheses, structures and antimicrobial properties. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2017.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Asadi K, van der Veen MA. Ferroelectricity in Metal-Organic Frameworks: Characterization and Mechanisms. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600932] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kamal Asadi
- Humboldt Research Group; Max-Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Monique Ann van der Veen
- Catalysis Engineering; Department of Chemical Engineering; Delft University of Technology; Van der Maasweg 9 2629HZ Delft the Netherlands
| |
Collapse
|
9
|
Qu XL, Zheng XL, Li X. A series of transition metal–organic frameworks: crystal structures, luminescence properties, and sensitizing for luminescent Ln(iii) ions in aqueous solution. RSC Adv 2016. [DOI: 10.1039/c6ra08419b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A series of transition metal–organic frameworks were assembled. Crystal structures, luminescence and sensitizing for Ln(iii) ions were studied.
Collapse
Affiliation(s)
- Xiang-Long Qu
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Xiao-Li Zheng
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Xia Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| |
Collapse
|