1
|
Xue HZ, Wu JH, Wang BW, Gao S, Zhang JL. Coordination Induced Spin State Transition Switches the Reactivity of Nickel (II) Porphyrin in Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2025; 64:e202413042. [PMID: 39560396 DOI: 10.1002/anie.202413042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
Electron spin plays a critical role in chemical processes, particularly in reactions involving metal complexes with unpaired electrons. However, more definitive state-to-state experiments are needed to better elucidate the role of electronic spin. Herein, we chose nickel (II) 5,10,15,20-tetrakis(pentafluorophenyl) porphyrin 1 as a catalyst, which allows switching from a low spin to a high spin state of Ni (II) center through an axial pyridine coordination, for electrocatalytic hydrogen evolution reaction (HER). When pyridine is present, we observed β-hydrogenation of porphyrin through electron transfer followed by proton transfer. In contrast, hydrogen evolution mainly occurs via the concerted proton-coupling electron transfer without pyridine coordination. Similar distinct spin-dependent selectivity was also observed in chemical reduction of 1 by CoCp2 with subsequent addition of pyridinium p-toluenesulfonate. Computational calculations using density functional theory demonstrated that the transition from low spin to high spin state enriches the ligand's electron density after one-electron reduction, leading to preferential protonation of β-periphery rather than meso-position or metal center.
Collapse
Affiliation(s)
- Hao-Zong Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jia-Hui Wu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Sun Yat-sen University, School of Chemistry and Chemical Engineering, Guangzhou, 510275, China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Montenegro‐Pohlhammer N, Sánchez‐de‐Armas R, Gruber M, Calzado CJ. Mechanisms for the Spin-State Switching of Strapped Ni-Porphyrin Complexes Deposited on Metal Surfaces: Insights from Quantum Chemical Calculations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406313. [PMID: 39501970 PMCID: PMC11735879 DOI: 10.1002/smll.202406313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Indexed: 01/18/2025]
Abstract
The incorporation of molecular switches on nanodevices requires both the intactness of the molecule once deposited on a substrate and the persistence of the reversible switching feature. Recently, the reversible spin-switching of strapped Ni(II)-porphyrin complexes deposited on Ag(111) surface is demonstrated with low-temperature scanning tunneling microscopy (STM). The spin transition is accompanied by the coordination change of the metal center, a phenomenon denominated in coordination-induced spin-state switching (CISSS). In this contribution, the spin switching of the deposited strapped Ni-porphyrin molecules using different quantum chemistry approaches is explored. This calculations inform about the geometry and electronic structure of the adsorbed molecules and the origin of the voltage-dependent switching promoted by the STM tip. Two different mechanisms are inspected to elucidate the key role of the tip, mainly the electron injection between the tip and the molecule and the differential stabilization of the two spin states by the applied electric field between the tip and the silver surface. This study puts in evidence the relevance of the pyridine ligand contained in the strap in the transport properties as in the CISSS process itself.
Collapse
Affiliation(s)
- Nicolás Montenegro‐Pohlhammer
- Escuela de Ingeniería CivilFacultad de IngenieríaCiencia y Tecnología, Universidad Bernardo O'HigginsSantiago1702Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA)Universidad Bernardo O'HigginsGeneral GanaSantiago1702Chile
| | - Rocío Sánchez‐de‐Armas
- Departamento de Química FísicaUniversidad de Sevillac/ Prof. García González, s/nSevilla41012Spain
| | - Manuel Gruber
- Faculty of PhysicsUniversity of Duisburg‐Essen47057DuisburgGermany
| | - Carmen J. Calzado
- Departamento de Química FísicaUniversidad de Sevillac/ Prof. García González, s/nSevilla41012Spain
| |
Collapse
|
3
|
Hashem K, Krishnan R, Yang K, Anjali BA, Zhang Y, Jiang J. Computational design of metal hydrides on a defective metal-organic framework HKUST-1 for ethylene dimerization. Phys Chem Chem Phys 2024; 26:7109-7123. [PMID: 38348573 DOI: 10.1039/d3cp06257k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Catalytic ethylene dimerization to 1-butene is a crucial reaction in the chemical industry, as 1-butene is used for the production of most common plastics (e.g., polyethylene). With well-defined tuneable structures and unsaturated active sites, defective metal-organic frameworks have recently emerged as potential catalysts for ethylene dimerization. Herein, we computationally design a series of metal hydrides on defective HKUST-1 namely H-M-DHKUST-1 (M: Co, Ni, Cu, Ru, Rh and Pd), and subsequently assess their catalytic activity for ethylene dimerization by density functional theory calculations. Due to the antiferromagnetic behavior of dimeric metal-based clusters, we comprehensively investigate all possible multiplicity states on H-M-DHKUST-1 and observe multiplicity crossing. The ground-state reaction barriers for four elementary steps (initiation, C-C coupling, β-hydride elimination and 1-butene desorption) are rationalized and C-C coupling is revealed to be the rate-determining step on H-Co-, H-Ni-, H-Ru-, H-Rh- and H-Pd-DHKUST-1. The energy barrier for β-hydride elimination is found to be the lowest on H-Ru- and H-Rh-DHKUST-1, attributed to the weak stability of agostic arrangement; however, the energy barrier for 1-butene desorption is the highest on H-Rh-DHKUST-1. Among the designed H-M-DHKUST-1, Co- and Ni-based ones are predicted to exhibit the best overall catalytic performance. The mechanistic insights from this study may facilitate the development of new MOFs toward efficient ethylene dimerization and other industrially important reactions.
Collapse
Affiliation(s)
- Karam Hashem
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pasek Road Jurong Island, 627833, Singapore
| | - Ramakrishna Krishnan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
| | - Kuiwei Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
| | - Bai Amutha Anjali
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
| | - Yugen Zhang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pasek Road Jurong Island, 627833, Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
| |
Collapse
|
4
|
Resines-Urien E, Fernandez-Bartolome E, Martinez-Martinez A, Gamonal A, Piñeiro-López L, Costa JS. Vapochromic effect in switchable molecular-based spin crossover compounds. Chem Soc Rev 2023; 52:705-727. [PMID: 36484276 DOI: 10.1039/d2cs00790h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coordination complexes based on transition metal ions displaying [Ar]3d4-3d7 electronic configurations can undergo the likely most spectacular switchable phenomena found in molecular coordination chemistry, the well-known Spin Crossover (SCO). SCO phenomena is a detectable, reproducible and reversible switch that occurs between the high spin (HS) and low spin (LS) electronic states of the transition metal actuated by different stimuli (i.e. light, temperature, pressure, the presence of an analyte). Moreover, the occurrence of SCO phenomena causes different outputs, one of them being a colour change. Altogether, an analyte in gas form could be detected by naked eye once it has triggered the corresponding HS ↔ LS transition. This vapochromic effect could be used to detect volatile molecules using a low-cost technology, including harmful chemical substances, gases and/or volatile organic compounds (VOCs) that are present in our environment, in our home or at our workplace. The present review condenses all reported iron coordination compounds where the colour change induced by a given molecule in its gas form is coupled to a HS ↔ LS spin transition. Special emphasis has been made on describing the nature of the post-synthetic modification (PSM) taking place in the material upon the analyte uptake. In this case, three types of PSM can be distinguished: based on supramolecular contacts and/or leading to a coordinative or covalent bond. In the latter, a colour change not only indicates the switch of the spin state in the material but also the formation of a new compound with different properties. It is important to indicate that some of the SCO coordination compounds discussed in the current report have been part of other spin crossover reviews, that have gathered thermally induced SCO compounds and the influence of guest molecules on the SCO behaviour. However, in the majority of examples in these reviews, the change of colour upon the uptake of analytes is not associated with a spin transition at room temperature. In addition, the observed colour variations have been mainly discussed in terms of host-guest interactions, when they can also be induced by a PSM taking place in different sites of the molecule, like the Fe(II) coordination sphere or by chemically altering its inorganic and/or organic linkers. Therefore, we present here for the first time an exhaustive compilation of all systems in which the interaction between the coordination compounds and the vapour analytes leads to a colour change due to a spin transition in the metal centre at room temperature.
Collapse
|
5
|
Fischer K, Krahmer J, Tuczek F. Chemically and Light-Driven Coordination-Induced Spin State Switching (CISSS) of a nonheme-iron complex. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2022-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The new Fe(II) complex [Fe(trident)(bmik)](ClO4)2 (1) (trident = bis(2-pyridylmethyl)benzylamine and bmik = bis(1-methylimidazole)ketone) exhibits a change of magnetic moment in dichloromethane (DCM) solution upon addition of pyridine which is attributed to the Coordination-Induced Spin State Switching effect (CISSS). By attaching a photoisomerizable azopyridine sidegroup to the tridentate ligand the complex [Fe(azpy-trident)(bmik)](ClO4)2 (2; azpy-trident = [N,N-bis(2-pyridylmethyl)]-3-(3-pyridylazo)benzylamine) is obtained. As detected by Evans NMR spectroscopy, 2 reversibly changes its magnetic moment in homogeneous solution upon photoirradiation which is attributed to intermolecular Light-Driven Coordination-Induced Spin State Switching (LD-CISSS). Further support for this interpretation is inferred from concentration-dependent Evans NMR measurements.
Collapse
Affiliation(s)
- Kim Fischer
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, D-24118 Kiel , Germany
| | - Jan Krahmer
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, D-24118 Kiel , Germany
| | - Felix Tuczek
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, D-24118 Kiel , Germany
| |
Collapse
|
6
|
Zhao Y, Wang L, Xue S, Guo Y. Reversible coordination-induced spin state switching in a nickel( ii) complex via a crystal-to-crystal transformation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01059c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented CISSS behavior driven by a single-crystal-to-single-crystal (SCSC) process is found in a dinuclear nickel(ii) complex, which provides a new strategy for developing external-stimuli molecular magnetic materials.
Collapse
Affiliation(s)
- Yaqian Zhao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liang Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shufang Xue
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yunnan Guo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
7
|
Pruszkowska K, Stasyuk OA, Zep A, Krówczyński A, Sicinski RR, Solà M, Cyrański MK. Effect of Diamine Bridge on Reactivity of Tetradentate ONNO Nickel(II) Complexes. Chemphyschem 2021; 23:e202100741. [PMID: 34783442 DOI: 10.1002/cphc.202100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Indexed: 11/08/2022]
Abstract
Two new square planar ONNO nickel(II) complexes C2_core and C3_core have been synthesized and characterized by single crystal X-ray diffraction, NMR spectroscopy, thermogravimetry, and DFT calculations. The experimental results revealed the effect of the length of diamine bridge in the ligand on the behavior of the studied complexes in the reaction with N-heterocyclic aromatic amines, while DFT calculations provided a basis for the rationalization of this observation. The complex with propylenediamine bridge (C3_core) readily reacts with pyridine and its derivatives to form high-spin (paramagnetic) complexes with octahedral geometry as characterized by X-ray diffraction; electron-donating substituents on the pyridine ring facilitate the coordination of axial ligands. In contrast, the complex with ethylenediamine bridge (C2_core) does not undergo such a reaction because of the high deformation energy of the core required for the formation of C2_Py complex.
Collapse
Affiliation(s)
- Kamila Pruszkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Olga A Stasyuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.,Institut de Química Computacional and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Anna Zep
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Adam Krówczyński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Rafal R Sicinski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Miquel Solà
- Institut de Química Computacional and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Michał K Cyrański
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
8
|
Farcaş AA, Bende A. Theoretical modeling of the singlet-triplet spin transition in different Ni(II)-diketo-pyrphyrin-based metal-ligand octahedral complexes. Phys Chem Chem Phys 2021; 23:4784-4795. [PMID: 33599640 DOI: 10.1039/d0cp05366j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural stability, charge transfer effects and strength of the spin-orbit couplings in different Ni(ii)-ligand complexes have been studied at the DFT (B3LYP and CAM-B3LYP) and coupled cluster (DLPNO-CCSD(T)) levels of theory. Accordingly, two different, porphyrin- and diketo-pyrphyrin-based four-coordination macrocycles as planar ligands as well as pyridine (or pyrrole) and mesylate anion molecular groups as vertical ligands were considered in order to build metal-organic complexes with octahedral coordination configurations. For each molecular system, the identification of equilibrium geometries and the intersystem crossing (the minimum energy crossing) points between the potential energy surfaces of the singlet and triplet spin states is followed by computing the spin-orbit couplings between the two spin states. Structures, based on the diketo-pyrphyrin macrocycle as the planar ligand, show stronger six-coordination metal-organic complexes due to the extra electrostatic interaction between the positively charged central metal cation and the negatively charged vertical ligands. The results also show that the magnitude of the spin-orbit coupling is influenced by the atomic positions of deprotonations of the ligands, and implicitly the direction of the charge transfer between the ligand and the central metal ion.
Collapse
Affiliation(s)
- Alex-Adrian Farcaş
- Faculty of Physics, "Babeş-Bolyai" University, Mihail Kogalniceanu Street No. 1, Ro-400084 Cluj-Napoca, Romania
| | - Attila Bende
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania.
| |
Collapse
|
9
|
Starikova AA, Starikov AG, Minkin VI. DFT computational insight into the mechanism of the monomer–trimer isomerism of Ni(II) bis-acetylacetonate. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Kurz H, Schötz K, Papadopoulos I, Heinemann FW, Maid H, Guldi DM, Köhler A, Hörner G, Weber B. A Fluorescence-Detected Coordination-Induced Spin State Switch. J Am Chem Soc 2021; 143:3466-3480. [PMID: 33636077 DOI: 10.1021/jacs.0c12568] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The response of the spin state to in situ variation of the coordination number (CISSS) is a promising and viable approach to smart sensor materials, yet it suffers to date from insensitive detection. Herein, we present the synthetic access to a family of planar nickel(II) complexes, whose CISSS is sensitively followed by means of fluorescence detection. For this purpose, nickel(II) complexes with four phenazine-based Schiff base-like ligands were synthesized and characterized through solution-phase spectroscopy (NMR and UV-vis), solid-state structure analysis (single-crystal XRD), and extended theoretical modeling. All of them reveal CISSS in solution through axial ligating a range of N- and O-donors. CISSS correlates nicely with the basicity of the axial ligand and the substitution-dependent acidity of the nickel(II) coordination site. Remarkably, three out of the four nickel(II) complexes are fluorescent in noncoordinating solvents but are fluorescence-silent in the presence of axial ligands such as pyridine. As these complexes are rare examples of fluorescent nickel(II) complexes, the photophysical properties with a coordination number of 4 were studied in detail, including temperature-dependent lifetime and quantum yield determinations. Most importantly, fluorescence quenching upon adding axial ligands allows a "black or white", i.e. digital, sensoring of spin state alternation. Our studies of fluorescence-detected CISSS (FD-CISSS) revealed that absorption-based CISSS and FD-CISSS are super proportional with respect to the pyridine concentration: FD-CISSS features a higher sensitivity. Overall, our findings indicate a favored ligation of these nickel(II) complexes in the excited state in comparison to the ground state.
Collapse
Affiliation(s)
- Hannah Kurz
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany
| | - Konstantin Schötz
- Soft Matter Optoelectronics, University of Bayreuth, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany
| | - Ilias Papadopoulos
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Harald Maid
- Organic Chemistry II, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Anna Köhler
- Soft Matter Optoelectronics, University of Bayreuth, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany.,Bayreuth Institute of Macromolecular Research (BIMF) and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany
| | - Gerald Hörner
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany
| | - Birgit Weber
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany
| |
Collapse
|
11
|
Qamar OA, Cong C, Ma H. Solid state mononuclear divalent nickel spin crossover complexes. Dalton Trans 2020; 49:17106-17114. [PMID: 33205805 DOI: 10.1039/d0dt03421e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin crossover complexes containing 3d4-3d7 transition metal ions with tunable electronic configurations in appropriate ligand field environments have been extensively investigated. In contrast, the development of 3d8 divalent nickel complexes displaying such a spin crossover behavior is far behind. The increasing number of X-ray single crystal structures along with magnetic evidence and thermodynamic equilibrium indicate that bistable divalent nickel complexes are gradually recognized to be a formal member of the "spin crossover family". Unfortunately, the rarity of nickel spin crossover complexes is occasionally mentioned. This Perspective article highlights examples of mononuclear 3d8 nickel spin crossover complexes in dynamic rearrangements with characterized solid state structures from the viewpoint of types of ligands utilized.
Collapse
Affiliation(s)
- Obaid Ali Qamar
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 21186, China.
| | | | | |
Collapse
|
12
|
Farcaș AA, Bende A. Improving the Light-Induced Spin Transition Efficiency in Ni(II)-Based Macrocyclic-Ligand Complexes. Molecules 2019; 24:molecules24234249. [PMID: 31766599 PMCID: PMC6930591 DOI: 10.3390/molecules24234249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/29/2023] Open
Abstract
The structural stability and photoabsorption properties of Ni(II)-based metal-organic complexes with octahedral coordination having different planar ligand ring structures were investigated employing density functional theory (DFT) and its time-dependent extension (TD-DFT) considering the M06 exchange-correlation functional and the Def2-TZVP basis set. The results showed that the molecular composition of different planar cyclic ligand structures had significant influences on the structural stability and photoabsorption properties of metal-organic complexes. Only those planar ligands that contained aromatic rings met the basic criteria (thermal stability, structural reversibility, and appropriate excitation frequency domain) for light-induced excited spin state trapping, but their spin transition efficiencies were very different. While, in all three aromatic cases, the singlet electronic excitations induced charge distribution that could help in the singlet-to-triplet spin transition, and triplet excitations, which could assist in the backward (triplet-to-singlet) spin transition, was found only for one complex.
Collapse
Affiliation(s)
- Alex-Adrian Farcaș
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania;
- Faculty of Physics, “Babeş-Bolyai” University, Mihail Kogalniceanu Street No. 1, Ro-400084 Cluj-Napoca, Romania
| | - Attila Bende
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania;
- Correspondence:
| |
Collapse
|