1
|
Badalkhani O, Pires PC, Mohammadi M, Babaie S, Paiva-Santos AC, Hamishehkar H. Nanogel Containing Gamma-Oryzanol-Loaded Nanostructured Lipid Carriers and TiO 2/MBBT: A Synergistic Nanotechnological Approach of Potent Natural Antioxidants and Nanosized UV Filters for Skin Protection. Pharmaceuticals (Basel) 2023; 16:ph16050670. [PMID: 37242453 DOI: 10.3390/ph16050670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The human skin is a recurring target of external aggressions, such as UV radiation, leading to exacerbation of the aging process and the occurrence of skin diseases, such as cancer. Hence, preventive measures should be taken to protect it against these aggressions, consequently decreasing the chance of disease development. In the present study, a topical xanthan gum nanogel containing gamma-oryzanol-loaded nanostructured lipid carriers (NLCs) and nanosized UV filters TiO2 and methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT) was developed to assess their synergistic potential in having multifunctional skin beneficial properties. The developed NLCs contained the natural-based solid lipids shea butter and beeswax, liquid lipid carrot seed oil, and the potent antioxidant gamma-oryzanol, with an optimum particle size for topical application (<150 nm), good homogeneity (PDI = 0.216), high zeta potential (-34.9 mV), suitable pH value (6), good physical stability, high encapsulation efficiency (90%), and controlled release. The final formulation, a nanogel containing the developed NLCs and the nano UV filters, showed high long-term storage stability and high photoprotection ability (SPF = 34) and resulted in no skin irritation or sensitization (rat model). Hence, the developed formulation showed good skin protection and compatibility, demonstrating promise as a new platform for the future generation of natural-based cosmeceuticals.
Collapse
Affiliation(s)
- Omolbanin Badalkhani
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Patrícia C Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maryam Mohammadi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj 6617715175, Iran
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| |
Collapse
|
2
|
Šamec D, Loizzo MR, Gortzi O, Çankaya İT, Tundis R, Suntar İ, Shirooie S, Zengin G, Devkota HP, Reboredo-Rodríguez P, Hassan STS, Manayi A, Kashani HRK, Nabavi SM. The potential of pumpkin seed oil as a functional food-A comprehensive review of chemical composition, health benefits, and safety. Compr Rev Food Sci Food Saf 2022; 21:4422-4446. [PMID: 35904246 DOI: 10.1111/1541-4337.13013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
The growing interest in foods that can be beneficial to human health is bringing into focus some products that have been used locally for centuries but have recently gained worldwide attention. One of these foods is pumpkin seed oil, which has been used in culinary and traditional medicine, but recent data also show its use in the pharmaceutical and cosmetic industries. In addition, some sources refer to it as a potential functional food, mainly because it is obtained from pumpkin seeds, which contain many functional components. However, the production process of the oil may affect the content of these components and consequently the biological activity of the oil. In this review, we have focused on summarizing scientific data that explore the potential of pumpkin seed oil as a functional food ingredient. We provide a comprehensive overview of pumpkin seed oil chemical composition, phytochemical content, biological activity, and safety, as well as the overview of production processes and contemporary use. The main phytochemicals in pumpkin seed oil with health-related properties are polyphenols, phytoestrogens, and fatty acids, but carotenoids, squalene, tocopherols, and minerals may also contribute to health benefits. Most studies have been conducted in vitro and support the claim that pumpkin seed oil has antioxidant and antimicrobial activities. Clinical studies have shown that pumpkin seed oil may be beneficial in the treatment of cardiovascular problems of menopausal women and ailments associated with imbalance of sex hormones.
Collapse
Affiliation(s)
- Dunja Šamec
- Department of Food Technology, University Center Koprivnica, University North, Koprivnica, Croatia
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Olga Gortzi
- School of Agricultural Sciences, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - İrem Tatlı Çankaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - İpek Suntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | | | - Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Azadeh Manayi
- Medicinal Plants Research Centre, Faculty of Pharmacy, University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Van NH, Vy NT, Van Toi V, Dao AH, Lee BJ. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Chu CC, Hasan ZAA, Tan CP, Nyam KL. In vitro safety evaluation of sunscreen formulation from nanostructured lipid carriers using human cells and skin model. Toxicol In Vitro 2022; 84:105431. [PMID: 35809791 DOI: 10.1016/j.tiv.2022.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
There is a risk of toxicological reactions due to systemic absorption and photo-instability of sunscreens. The study aimed to investigate the safety profile (cytotoxicity, phototoxicity, photostability, UV filter release profile, and skin irritation properties) of sunscreen (NLC-TRF sunscreen) produced from nanostructured lipid carriers (NLCs) and tocotrienol-rich fraction (TRF). The cytotoxicity and phototoxicity of the sunscreen were evaluated on normal human dermal fibroblast (NHDF) and skin irritation properties was tested on skin model. Besides, the photoprotection in pre- and post-UV irradiation were analysed to determine the photostability. Additionally, the release profile for UV filters (diethylamino hydroxybenzoyl hexyl benzoate (DHHB) and ethylhexyl triazone (EHT)) were evaluated. The NLC-TRF sunscreen demonstrated no cytotoxicity and skin irritation to cause cell death. It showed no phototoxic effect and high photostability up to 10 Minimal Erythema Dose (MED) to ensure high SPF value above 50 and broad-spectrum of UV absorption. The NLC-TRF sunscreen implies its safety for topical application with sustainable release profile for UV filter (cumulative release of 28% for DHHB and 40% for EHT after 8 h) due to the application of NLCs. The results suggest that the NLC-TRF sunscreen is an advanced formulation with improved stability and is safe for topical delivery.
Collapse
Affiliation(s)
- Chee Chin Chu
- Faculty of Applied Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia
| | - Zafarizal Aldrin Azizul Hasan
- Advanced Oleochemical Technology Division, Malaysian Palm Oil Board, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Chin Ping Tan
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Kar Lin Nyam
- Faculty of Applied Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
da Silva MG, de Godoi KRR, Gigante ML, Pavie Cardoso L, Paula Badan Ribeiro A. Developed and characterization of nanostructured lipid carriers containing food-grade interesterified lipid phase for food application. Food Res Int 2022; 155:111119. [DOI: 10.1016/j.foodres.2022.111119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/04/2022]
|
6
|
da Silva MG, de Godoi KRR, Gigante ML, Cardoso LP, Ribeiro APB. Nanostructured lipid carriers for delivery of free phytosterols: Effect of lipid composition and chemical interesterification on physical stability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Chu CC, Hasan ZABA, Tan CP, Nyam KL. In Vitro Antiaging Evaluation of Sunscreen Formulated from Nanostructured Lipid Carrier and Tocotrienol-Rich Fraction. J Pharm Sci 2021; 110:3929-3936. [PMID: 34425132 DOI: 10.1016/j.xphs.2021.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022]
Abstract
Chronic exposure to ultraviolet (UV) radiation leads to photoaging. There is a tremendous rise in products having a dual activity of photoprotection and antiaging. In vitro analysis in dermal fibroblasts and their biological mechanisms involved are critical to determine antiaging potential. The study aimed to investigate the antiaging potential of sunscreen formulated from nanostructured lipid carrier and tocotrienol-rich fraction (NLC-TRF sunscreen). The antioxidant activity of the NLC-TRF sunscreen was evaluated by radical scavenging and hydrogen peroxide inhibition properties. Also, collagenase, elastase and matrix metalloproteinase-1 (MMP-1) inhibition activities, and type I collagen and elastin protein expression were studied. Quantitative real-time polymerase chain reaction (qPCR) was used to evaluate the mRNA expression of fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), type I collagen (COL1A1), elastin (ELN), MMP-1, MMP-2, and tissue inhibitor matrix metalloproteinase-1 (TIMP-1). The results suggested that NLC-TRF sunscreen is effective in radical, anti-hydrogen peroxide, and collagenase, elastase and MMP-1 inhibition activities. Besides, a significant increase for type I collagen (3.47-fold) and elastin (2.16-fold) protein and fibroblast regeneration genes (FGF (2.12-fold), VEGF (1.91-fold), TGF-β1 (2.84-fold), TIMP-1 (1.42-fold), ELN (2.13-fold)) were observed after sample treatment. These findings support the therapeutic potential of NLC-TRF sunscreen in antiaging.
Collapse
Affiliation(s)
- Chee Chin Chu
- Faculty of Applied Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia
| | | | - Chin Ping Tan
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Kar Lin Nyam
- Faculty of Applied Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Chu CC, Nyam KL. Application of seed oils and its bioactive compounds in sunscreen formulations. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Chee Chin Chu
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| | - Kar Lin Nyam
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| |
Collapse
|
9
|
Design, Preparation, and Characterization of Effective Dermal and Transdermal Lipid Nanoparticles: A Review. COSMETICS 2021. [DOI: 10.3390/cosmetics8020039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Limited permeability through the stratum corneum (SC) is a major obstacle for numerous skin care products. One promising approach is to use lipid nanoparticles as they not only facilitate penetration across skin but also avoid the drawbacks of conventional skin formulations. This review focuses on solid lipid nanoparticles (SLNs), nanostructured lipid nanocarriers (NLCs), and nanoemulsions (NEs) developed for topical and transdermal delivery of active compounds. A special emphasis in this review is placed on composition, preparation, modifications, structure and characterization, mechanism of penetration, and recent application of these nanoparticles. The presented data demonstrate the potential of these nanoparticles for dermal and transdermal delivery.
Collapse
|
10
|
Chu CC, Chew SC, Nyam KL. Recent advances in encapsulation technologies of kenaf (Hibiscus cannabinus) leaves and seeds for cosmeceutical application. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Qushawy M. Effect of the Surfactant and Liquid Lipid Type in the Physico-chemical Characteristics of Beeswax-based Nanostructured Lipid Carrier (NLC) of Metformin. Pharm Nanotechnol 2021; 9:200-209. [PMID: 33618652 DOI: 10.2174/2211738509666210222143716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Metformin (MF) is an antidiabetic drug that belongs to class III of the biopharmaceutical classification system (BCS) characterized by high solubility and low permeability. OBJECTIVE The study aimed to prepare metformin as nanostructured lipid carriers (MF-NLCs) to control the drug release and enhance its permeability through the biological membrane. METHODS 22 full factorial design was used to make the design of MF-NLCs formulations. MFNLCs were prepared by hot-melt homogenization-ultra sonication technique using beeswax as solid lipid in the presence of liquid lipid (either capryol 90 or oleic acid) and surfactant (either poloxamer 188 or tween 80). RESULTS The entrapment efficiency (EE%) of MF-NLCs was ranged from 85.2±2.5 to 96.5±1.8%. The particle size was in the nanoscale (134.6±4.1 to 264.1±4.6 nm). The value of zeta potential has a negative value ranged from -25.6±1.1 to -39.4±0.9 mV. The PDI value was in the range of 0.253±0.01 to 0.496±0.02. The cumulative drug release was calculated for MF-NLCs and it was found that Q12h ranged from 90.5±1.7% for MF-NLC1 to 99.3±2.8 for MF-NLC4. Infra-red (IR) spectroscopy and differential scanning calorimetry (DSC) studies revealed the compatibility of the drug with other ingredients. MF-NLC4 was found to be the optimized formulation with the best responses. CONCLUSION 22 full factorial design succeed to obtain an optimized formulation which controls the drug release and increases the drug penetration.
Collapse
Affiliation(s)
- Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
12
|
Chu CC, Hasan ZABA, Tan CP, Nyam KL. Application of Kenaf Seed Oil‐Nanostructured Lipid Carrier to Palm‐Based α‐Tocopherol Cream for Photoprotection. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chee Chin Chu
- Department of Food Science with Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur 56000 Malaysia
| | - Zafarizal Aldrin Bin Azizul Hasan
- Consumer Product Development Unit, Advanced Oleochemical Technology Division Malaysian Palm Oil Board Bandar Baru Bangi, Kajang Selangor 43000 Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology University Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Kar Lin Nyam
- Department of Food Science with Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur 56000 Malaysia
| |
Collapse
|