1
|
Wong YH, Lee SH. Short Fragmented Peptides from Pardachirus Marmoratus Exhibit Stronger Anticancer Activities in In Silico Residue Replacement and Analyses. Curr Drug Discov Technol 2024; 21:e220224227304. [PMID: 38409702 DOI: 10.2174/0115701638290855240207114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Cancer is a worldwide issue. It has been observed that conventional therapies face many problems, such as side effects and drug resistance. Recent research reportedly used marine-derived products to treat various diseases and explored their potential in treating cancers. OBJECTIVE This study aims to discover short-length anticancer peptides derived from pardaxin 6 through an in silico approach. METHODS Fragmented peptides ranging from 5 to 15 amino acids were derived from the pardaxin 6 parental peptide. These peptides were further replaced with one residue and, along with the original fragmented peptides, were predicted for their SVM scores and physicochemical properties. The top 5 derivative peptides were further examined for their toxicity, hemolytic probability, peptide structures, docking models, and energy scores using various web servers. The trend of in silico analysis outputs across 5 to 15 amino acid fragments was further analyzed. RESULTS Results showed that when the amino acids were increased, SVM scores of the original fragmented peptides were also increased. Designed peptides had increased SVM scores, which was aligned with previous studies where the single residue replacement transformed the non-anticancer peptide into an anticancer agent. Moreover, in vitro studies validated that the designed peptides retained or enhanced anticancer effects against different cancer cell lines. Interestingly, a decreasing trend was observed in those fragmented derivative peptides. CONCLUSION Single residue replacement in fragmented pardaxin 6 was found to produce stronger anticancer agents through in silico predictions. Through bioinformatics tools, fragmented peptides improved the efficiency of marine-derived drugs with higher efficacy and lower hemolytic effects in treating cancers.
Collapse
Affiliation(s)
- Yong Hui Wong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya, 47500, Malaysia
| |
Collapse
|
2
|
Oliveira IS, Silva SG, do Vale ML, Marques EF. Model Catanionic Vesicles from Biomimetic Serine-Based Surfactants: Effect of the Combination of Chain Lengths on Vesicle Properties and Vesicle-to-Micelle Transition. MEMBRANES 2023; 13:178. [PMID: 36837681 PMCID: PMC9966114 DOI: 10.3390/membranes13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Mixtures of cationic and anionic surfactants often originate bilayer structures, such as vesicles and lamellar liquid crystals, that can be explored as model membranes for fundamental studies or as drug and gene nanocarriers. Here, we investigated the aggregation properties of two catanionic mixtures containing biomimetic surfactants derived from serine. The mixtures are designated as 12Ser/8-8Ser and 14Ser/10-10Ser, where mSer is a cationic, single-chained surfactant and n-nSer is an anionic, double-chained one (m and n being the C atoms in the alkyl chains). Our goal was to investigate the effects of total chain length and chain length asymmetry of the catanionic pair on the formation of catanionic vesicles, the vesicle properties and the vesicle/micelle transitions. Ocular observations, surface tension measurements, video-enhanced light microscopy, cryogenic scanning electron microscopy, dynamic and electrophoretic light scattering were used to monitor the self-assembly process and the aggregate properties. Catanionic vesicles were indeed found in both systems for molar fractions of cationic surfactant ≥0.40, always possessing positive zeta potentials (ζ = +35-50 mV), even for equimolar sample compositions. Furthermore, the 14Ser/10-10Ser vesicles were only found as single aggregates (i.e., without coexisting micelles) in a very narrow compositional range and as a bimodal population (average diameters of 80 and 300 nm). In contrast, the 12Ser/8-8Ser vesicles were found for a wider sample compositional range and as unimodal or bimodal populations, depending on the mixing ratio. The aggregate size, pH and zeta potential of the mixtures were further investigated. The unimodal 12Ser/8-8Ser vesicles (<DH> ≈ 250 nm, pH ≈ 7-8, ζ ≈ +32 mV and a cationic/anionic molar ratio of ≈2:1) are particularly promising for application as drug/gene nanocarriers. Both chain length asymmetry and total length play a key role in the aggregation features of the two systems. Molecular insights are provided by the main findings.
Collapse
Affiliation(s)
- Isabel S. Oliveira
- CIQUP, IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Sandra G. Silva
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Luísa do Vale
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Eduardo F. Marques
- CIQUP, IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Silva SG, Pinheiro M, Pereira R, Dias AR, Ferraz R, Prudêncio C, Eaton PJ, Reis S, do Vale MLC. Serine-based surfactants as effective antimicrobial agents against multiresistant bacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183969. [PMID: 35588890 DOI: 10.1016/j.bbamem.2022.183969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The antimicrobial activity of two serine derived gemini cationic surfactants, amide (12Ser)2CON12 and ester (12Ser)2COO12, was tested using sensitive, E. coli ATCC 25922 and S. aureus ATCC 6538, and resistant, E. coli CTX M2, E. coli TEM CTX M9 and S. aureus ATCC 6538 and S. aureus MRSA ATCC 43300 Gram-positive and Gram-negative bacteria strains. Very low MIC values (5 μM) were found for the two resistant strains E.coli TEM CTX M9 and S. aureus MRSA ATCC 43300, in the case of the amide derivative, and for S. aureus MRSA ATCC 43300, in the case of the ester derivative. The interaction of the serine amphiphiles with lipid-model membranes (DPPG and DPPC) was investigated using Langmuir monolayers. A more pronounced effect on the DPPG than on the DPPC monolayer was observed. The effect induced by the surfactants on bacteria membrane was explored by Atomic Force Microscopy. A clear disruption of the bacteria membrane was observed for E. coli TEM CTX M9 upon treatment with (12ser)2CON12, whereas for the S. aureus MRSA few observable changes in cell morphology were found after treatment with either of the two surfactants. The cytotoxicity of the two compounds was assessed by hemolysis assay on human red blood cells (RBC). The compounds were shown to be non-cytotoxic up to 10 μM. Overall, the results reveal a promising potential, in particular of the amide derivative, as antimicrobial agent for two strains of antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Sandra G Silva
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Marina Pinheiro
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Instituto de Investigação em Ciências da Vida e Saúde (ICVS), Escola de Medicina (EM), Universidade do Minho, Braga, Portugal
| | - Rui Pereira
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ana Rita Dias
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde do Porto, Instituto Politécnico do Porto, Portugal
| | - Ricardo Ferraz
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde do Porto, Instituto Politécnico do Porto, Portugal
| | - Cristina Prudêncio
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde do Porto, Instituto Politécnico do Porto, Portugal; I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Peter J Eaton
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Salette Reis
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - M Luísa C do Vale
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
4
|
Eftaiha AF, Qaroush AK, Abo-Shunnar AS, Hammad SB, Assaf KI, Al-Qaisi FM, Paige MF. Interfacial Behavior of Modified Nicotinic Acid as Conventional/Gemini Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8524-8533. [PMID: 35775397 DOI: 10.1021/acs.langmuir.2c00596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report the synthesis and monolayer properties of conventional and gemini surfactants composed of nicotinic acid-based head groups with an emphasis on assessing how chemical structures affect the behavior of monolayers. A combination of Brewster angle microscopy and atomic force microscopy showed that pure hexadecyl nicotinate formed rippled strands in monolayers, and the gemini correspondents with either flexible or rigid organic linkers resulted in lobed-compact domains, which provides a simple method for patterning air-water and solid-air interfaces. The structural differences between conventional and gemini nicotinic acid-based surfactants could be explained by the interplay between line tension (that favors the formation of circular domains), balanced by dipole-dipole repulsion interaction between headgroups, which promotes extended domains. Miscibility and morphology studies of the modified nicotinic acid surfactants with palmitic acid demonstrated that the properties of mixed films can be controlled by the structure of the former. Excess Gibbs free energies of mixing indicated that the mixed films were less stable than the pure monolayers, and the positive deviations from ideality were the largest in the case of gemini surfactants.
Collapse
Affiliation(s)
- Ala'a F Eftaiha
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Abdussalam K Qaroush
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Ahmad S Abo-Shunnar
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Suhad B Hammad
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Khaleel I Assaf
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Feda'a M Al-Qaisi
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Matthew F Paige
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
5
|
Cationic gemini surfactant properties, its potential as a promising bioapplication candidate, and strategies for improving its biocompatibility: A review. Adv Colloid Interface Sci 2022; 299:102581. [PMID: 34891074 DOI: 10.1016/j.cis.2021.102581] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
Gemini surfactants consist of two cationic monomers of a surfactant linked together with a spacer. The specific structure of a cationic gemini surfactant is the reason for both its high surface activity and its ability to decrease the surface tension of water. The high surface activity and unique structure of gemini surfactants result in outstanding properties, including antibacterial and antifungal activity, anticorrosion properties, unique aggregation behaviour, the ability to form various structures reversibly in response to environmental conditions, and interactions with biomacromolecules such as DNA and proteins. These properties can be tailored by selecting the optimal structure of a gemini surfactant in terms of the nature and length of its alkyl substituents, spacer, and head group. Additionally, regarding their properties, comparison with their monomeric counterparts demonstrates that gemini surfactants have higher performance efficacy at lower concentrations. Hence, less material is needed, and the toxicity is lower. However, there are some limitations regarding their biocompatibility that have led researchers to develop amino acid-based and sugar-based gemini surfactants. Owing to their remarkable properties, cationic gemini surfactants are promising candidates for bioapplications such as drug delivery systems, gene carriers, and biomaterial surface modification.
Collapse
|
6
|
Rzycki M, Kaczorowska A, Kraszewski S, Drabik D. A Systematic Approach: Molecular Dynamics Study and Parametrisation of Gemini Type Cationic Surfactants. Int J Mol Sci 2021; 22:ijms222010939. [PMID: 34681599 PMCID: PMC8536075 DOI: 10.3390/ijms222010939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023] Open
Abstract
The spreading of antibiotic-resistant bacteria strains is one of the most serious problem in medicine to struggle nowadays. This triggered the development of alternative antimicrobial agents in recent years. One of such group is Gemini surfactants which are massively synthesised in various structural configurations to obtain the most effective antibacterial properties. Unfortunately, the comparison of antimicrobial effectiveness among different types of Gemini agents is unfeasible since various protocols for the determination of Minimum Inhibitory Concentration are used. In this work, we proposed alternative, computational, approach for such comparison. We designed a comprehensive database of 250 Gemini surfactants. Description of structure parameters, for instance spacer type and length, are included in the database. We parametrised modelled molecules to obtain force fields for the entire Gemini database. This was used to conduct in silico studies using the molecular dynamics to investigate the incorporation of these agents into model E. coli inner membrane system. We evaluated the effect of Gemini surfactants on structural, stress and mechanical parameters of the membrane after the agent incorporation. This enabled us to select four most likely membrane properties that could correspond to Gemini’s antimicrobial effect. Based on our results we selected several types of Gemini spacers which could demonstrate a particularly strong effect on the bacterial membranes.
Collapse
Affiliation(s)
- Mateusz Rzycki
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.K.); (S.K.); (D.D.)
- Correspondence:
| | - Aleksandra Kaczorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.K.); (S.K.); (D.D.)
| | - Sebastian Kraszewski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.K.); (S.K.); (D.D.)
| | - Dominik Drabik
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.K.); (S.K.); (D.D.)
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
7
|
Oliveira IS, Pereira C, Borges E, do Vale ML, Gomes AC, Marques EF. Formation of catanionic vesicles by threonine-derived surfactants and gemini surfactants based on conventional or serine-derived headgroups: designing versatile and cytocompatible nanocarriers. SOFT MATTER 2021; 17:7099-7110. [PMID: 34259282 DOI: 10.1039/d1sm00766a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we explore the ability of newly synthesized threonine-derived surfactants to form robust, versatile and cytocompatible catanionic vesicles when mixed with gemini surfactants, as potential effective nanocarriers for biomolecules. The threonine surfactants consist of single-tailed amphiphiles with carboxylate headgroups and varying alkyl tail length, CnThr, where n is the (even) number of tail C atoms, varying from 8 to 16. After an initial characterization of the micellization behavior of the neat CnThr surfactants (at pH = 7 and 12), the dodecyl derivative, C12Thr, was selected as the optimal surfactant to investigate regions of formation of spontaneous catanionic vesicles. Phase behavior studies and microstructural characterization of mixtures involving both conventional bis-quat n-s-n gemini (where n and s are the tail and spacer number of C atoms) and biocompatible serine-derived gemini surfactants were carried out. Light and electron microscopy, dynamic light scattering and zeta potential measurements show spontaneous vesicles indeed form and exhibit versatile features in terms of average size, morphology, polydispersity, surface charge and pH. The toxicological profile of the neat surfactants and C12Thr/gemini vesicles based on MTT assays with a L929 cell line was also evaluated, showing good levels of in vitro cytocompatibility. Overall, the assortment of developed catanionic vesicles offers very attractive physicochemical and biological features to be explored for delivery purposes.
Collapse
Affiliation(s)
- Isabel S Oliveira
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Cidália Pereira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Enrique Borges
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - M Luísa do Vale
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Andreia C Gomes
- CBMA, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Eduardo F Marques
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
8
|
Pereira R, Silva SG, Pinheiro M, Reis S, do Vale ML. Current Status of Amino Acid-Based Permeation Enhancers in Transdermal Drug Delivery. MEMBRANES 2021; 11:343. [PMID: 34067194 PMCID: PMC8151591 DOI: 10.3390/membranes11050343] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Transdermal drug delivery (TDD) presents many advantages compared to other conventional routes of drug administration, yet its full potential has not been achieved. The administration of drugs through the skin is hampered by the natural barrier properties of the skin, which results in poor permeation of most drugs. Several methods have been developed to overcome this limitation. One of the approaches to increase drug permeation and thus to enable TDD for a wider range of drugs consists in the use of chemical permeation enhancers (CPEs), compounds that interact with skin to ultimately increase drug flux. Amino acid derivatives show great potential as permeation enhancers, as they exhibit high biodegradability and low toxicity. Here we present an overview of amino acid derivatives investigated so far as CPEs for the delivery of hydrophilic and lipophilic drugs across the skin, focusing on the structural features which promote their enhancement capacity.
Collapse
Affiliation(s)
- Rui Pereira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (R.P.); (S.G.S.)
| | - Sandra G. Silva
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (R.P.); (S.G.S.)
| | - Marina Pinheiro
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.P.); (S.R.)
| | - Salette Reis
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.P.); (S.R.)
| | - M. Luísa do Vale
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (R.P.); (S.G.S.)
| |
Collapse
|
9
|
Pratap AP, Datir K, Mane S, Shukla G. Synthesis of dimeric surfactant based on neem fatty acid and its characterization. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Bai Y, Pu C, Liu S, Gao X, Chen G. Synthesis and Surface Properties of Novel Quaternary Ammonium Gemini Surfactants with Polar Head Groups Containing 2‐Hydroxypropyl Moieties. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yun Bai
- School of Petroleum Engineering China University of Petroleum Qingdao 266580 China
| | - Chunsheng Pu
- School of Petroleum Engineering China University of Petroleum Qingdao 266580 China
| | - Shuai Liu
- School of Petroleum Engineering China University of Petroleum Qingdao 266580 China
| | - Xiang Gao
- School of Petroleum Engineering China University of Petroleum Qingdao 266580 China
| | - Gang Chen
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields Xi'an Shiyou University Xi'an 710065 China
| |
Collapse
|
11
|
Effective cytocompatible nanovectors based on serine-derived gemini surfactants and monoolein for small interfering RNA delivery. J Colloid Interface Sci 2021; 584:34-44. [PMID: 33039681 DOI: 10.1016/j.jcis.2020.09.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/19/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Non-viral gene therapy based on gene silencing with small interfering RNA (siRNA) has attracted great interest over recent years. Among various types of cationic complexation agents, amino acid-based surfactants have been recently explored for nucleic acid delivery due to their low toxicity and high biocompatibility. Monoolein (MO), in turn, has been used as helper lipid in liposomal systems due to its ability to form inverted nonbilayer structures that enhance fusogenicity, thus contributing to higher transfection efficiency. In this work, we focused on the development of nanovectors for siRNA delivery based on three gemini amino acid-based surfactants derived from serine - (12Ser)2N12, amine derivative; (12Ser)2COO12, ester derivative; and (12Ser)2CON12, amide derivative - individually combined with MO as helper lipid. The inclusion of MO in the cationic surfactant system influences the morphology and size of the mixed aggregates. Furthermore, the gemini surfactant:MO systems showed the ability to efficiently complex siRNA, forming stable lipoplexes, in some cases clearly depending on the MO content, without inducing significant levels of cytotoxicity. High levels of gene silencing were achieved in comparison with a commercially available standard indicating that these gemini:MO systems are promising candidates as lipofection vectors for RNA interference (RNAi)-based therapies.
Collapse
|
12
|
Ponti F, Campolungo M, Melchiori C, Bono N, Candiani G. Cationic lipids for gene delivery: many players, one goal. Chem Phys Lipids 2021; 235:105032. [PMID: 33359210 DOI: 10.1016/j.chemphyslip.2020.105032] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Lipid-based carriers represent the most widely used alternative to viral vectors for gene expression and gene silencing purposes. This class of non-viral vectors is particularly attractive for their ease of synthesis and chemical modifications to endow them with desirable properties. Despite combinatorial approaches have led to the generation of a large number of cationic lipids displaying different supramolecular structures and improved behavior, additional effort is needed towards the development of more and more effective cationic lipids for transfection purposes. With this review, we seek to highlight the great progress made in the design of each and every constituent domain of cationic lipids, that is, the chemical structure of the headgroup, linker and hydrophobic moieties, and on the specific effect on the assembly with nucleic acids. Since the complexity of such systems is known to affect their performances, the role of formulation, stability and phase behavior on the transfection efficiency of such assemblies will be thoroughly discussed. Our objective is to provide a conceptual framework for the development of ever more performing lipid gene delivery vectors.
Collapse
Affiliation(s)
- Federica Ponti
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy; Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Dept. Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC, Canada
| | - Matilde Campolungo
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Clara Melchiori
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Nina Bono
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| | - Gabriele Candiani
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| |
Collapse
|
13
|
Oliveira IS, Silva JP, Araújo MJ, Gomes AC, Marques EF. Biocompatible thermosensitive nanostructures and hydrogels of an amino acid-derived surfactant and hydroxyethyl cellulose polymers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Dani U, Bahadur A, Kuperkar K. Biotoxicity and tissue-specific oxidative stress induced by Gemini surfactant as a protocol on fingerlings of Cirrhinus mrigala (Ham.): An integrated experimental and theoretical methodology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109478. [PMID: 31374383 DOI: 10.1016/j.ecoenv.2019.109478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
An increasing concern for Gemini surfactants (GS) based on the class alkanediyl-α-ω-bis (dimethylalkylammonium bromide) has been reported in ecotoxicological researchbecause of their estrogenic properties causing an alarm to aquatic life. In this study, we analyzed the toxic effects of the synthesized GS (12-2-12 and 16-2-16) leading to histological changes in fingerlings (kidney, gills, intestine, and liver) of Cirrhinusmrigala. Damage in the tissues in correlation with their normal architecture was observed microscopically and was manifold. The tissue-specific morphological alterations associated with somatic index (MAV- mean alteration value) were used as biomarker. The present study also highlighted the changes in the antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT). In order to estimate the sub-lethal toxic properties of GS, the genotoxicity and cytotoxicity of GS were evaluated using blood smear assay and HeLa cell line respectively. Results of the study exhibited potential biotoxicity where GS with the highest hydrophobicity showed upper most toxicity level under different exposure time, while GS with less hydrophobic features exhibited least stressful regimeto the tested animal. The prepared GS were also examined for their biodegradability following the die-away method. The theoretical approach estimates the structural information by computational simulation.
Collapse
Affiliation(s)
- Unnati Dani
- Department of Zoology, P. T. Sarvajanik College of Science (PTSCS), Surat, 395001, Gujarat, India
| | - Anita Bahadur
- Department of Zoology, P. T. Sarvajanik College of Science (PTSCS), Surat, 395001, Gujarat, India.
| | - Ketan Kuperkar
- Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| |
Collapse
|
15
|
Anchev BA, Tsekova DS, Mircheva KM, Grozev NA. Monolayer formed by l-Asp-based gemini surfactants self-assembled in 1D nanostructures. RSC Adv 2019; 9:33071-33079. [PMID: 35529116 PMCID: PMC9073239 DOI: 10.1039/c9ra06390k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
Herein, studies on the surface activities of newly synthesized l-Asp-based gemini surfactants, both nonionic and anionic, are presented. Conductometry, tensiometry, and the Langmuir-Blodgett (LB) film technique were applied for this purpose. π-A isotherms were obtained with a Langmuir trough and Wilhelmy balance. The structures of the monolayers assembled at the air/water interface and those deposited as LB films were studied via Brewster angle microscopy (BAM) and atomic force microscopy (AFM). The 2D films formed by the anion-active compounds show a well-known pattern of a monolayer film, whereas the nonionogenic amphiphiles have been found to be 1D structures with nano-widths and micro-lengths that align with each other during the process of compression; this is the first study where the organization of 1D fibrils in 2D films during compression is reported. The scanning electron microscopy (SEM) study reveals that 1D nanostructure formation is an intrinsic tendency of these molecules as not only nonionogenic surfactants, but also the anion active representatives have been constructed in the solid state by fibrillary structures.
Collapse
Affiliation(s)
- Borislav A Anchev
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy St. Kliment Ohridski Boulevard 1756 Sofia Bulgaria
| | - Daniela S Tsekova
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy St. Kliment Ohridski Boulevard 1756 Sofia Bulgaria
| | - Kristina M Mircheva
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1 James Bourchier Boulevard Sofia 1164 Bulgaria
| | - Nikolay A Grozev
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1 James Bourchier Boulevard Sofia 1164 Bulgaria
| |
Collapse
|
16
|
Pinazo A, Pons R, Bustelo M, Manresa MÁ, Morán C, Raluy M, Pérez L. Gemini histidine based surfactants: Characterization; surface properties and biological activity. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Kanoje B, Patel D, Kumar V, Sahoo SK, Parikh J, Kuperkar K. Unraveling the solubilization and cytotoxicity study of poorly water-soluble anti-inflammatory drug in aqueous Gemini surfactants solution with physicochemical characterization and simulation study. Colloids Surf B Biointerfaces 2019; 179:437-444. [DOI: 10.1016/j.colsurfb.2019.03.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
|
18
|
Gonçalves Lopes RCF, Silvestre OF, Faria AR, C do Vale ML, Marques EF, Nieder JB. Surface charge tunable catanionic vesicles based on serine-derived surfactants as efficient nanocarriers for the delivery of the anticancer drug doxorubicin. NANOSCALE 2019; 11:5932-5941. [PMID: 30556563 DOI: 10.1039/c8nr06346j] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Self-assembled vesicles composed of amino acid-based cationic/anionic surfactant mixtures show promise as novel effective drug nanocarriers. Here, we report the in vitro performance of vesicles based on cationic (16Ser) and anionic (8-8Ser) serine-based surfactants using a cancer cell model for the delivery of the anticancer drug doxorubicin (DOX). This catanionic mixture yields both negatively (0.20 in the cationic surfactant molar fraction, x16Ser) and positively (x16Ser = 0.58) charged vesicles, hence providing a surface charge tunable system. Low toxicity is confirmed for concentration ranges below 32 μM in both formulations. DOX is successfully encapsulated in the vesicles, resulting in a surface charge switch to negative for the (0.58) system, making both (0.20) and (0.58) DOX-loaded vesicles highly interesting for systemic administration. High uptake by cells was demonstrated using flow cytometry and confocal microscopy. Drug accumulation results in an increase of cell uptake up to 250% and 200% for the (0.20) and (0.58) vesicles, respectively, compared to free DOX and with localizations near the nuclear regions in the cells. The in vitro cytotoxicity studies show that DOX-loaded vesicles induce cell death, confirming the therapeutic potential of the formulations. Furthermore, the efficient accumulation of the drug inside the cell compartments harbors the potential for optimization strategies including phased delivery for prolonged treatment periods or even on-demand release.
Collapse
Affiliation(s)
- Raquel C F Gonçalves Lopes
- Department of Nanophotonics, Ultrafast Bio- and Nanophotonics group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| | | | | | | | | | | |
Collapse
|
19
|
Abreu B, Rocha J, Fernandes RMF, Regev O, Furó I, Marques EF. Gemini surfactants as efficient dispersants of multiwalled carbon nanotubes: Interplay of molecular parameters on nanotube dispersibility and debundling. J Colloid Interface Sci 2019; 547:69-77. [PMID: 30939346 DOI: 10.1016/j.jcis.2019.03.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 12/26/2022]
Abstract
Surfactants have been widely employed to debundle, disperse and stabilize carbon nanotubes in aqueous solvents. Yet, a thorough understanding of the dispersing mechanisms at molecular level is still warranted. Herein, we investigated the influence of the molecular structure of gemini surfactants on the dispersibility of multiwalled carbon nanotubes (MWNTs). We used dicationic n-s-n gemini surfactants, varying n and s, the number of alkyl tail and alkyl spacer carbons, respectively; for comparisons, single-tailed surfactant homologues were also studied. Detailed curves of dispersed MWNT concentration vs. surfactant concentration were obtained through a stringently controlled experimental procedure, allowing for molecular insight. The gemini are found to be much more efficient dispersants than their single-tailed homologues, i.e. lower surfactant concentration is needed to attain the maximum dispersed MWNT concentration. In general, the spacer length has a comparatively higher influence on the dispersing efficiency than the tail length. Further, scanning electron microscopy imaging shows a sizeable degree of MWNT debundling by the gemini surfactants in the obtained dispersions. Our observations also point to an adsorption process that does not entail the formation of micelle-like aggregates on the nanotube surface, but rather coverage by individual molecules, among which the ones that seem to be able to adapt best to the nanotube surface provide the highest efficiency. These studies are relevant for the rational design and choice of optimal dispersants for carbon nanomaterials and other similarly water-insoluble materials.
Collapse
Affiliation(s)
- Bárbara Abreu
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Jessica Rocha
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Ricardo M F Fernandes
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Oren Regev
- Department of Chemical Engineering, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel; Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - István Furó
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Eduardo F Marques
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
20
|
Sun P, Ren S, Wu A, Sun N, Shi L, Zheng L. Chirality transfer based on dynamic covalent chemistry: from small chiral molecules to supramolecules. Chem Commun (Camb) 2019; 55:9861-9864. [DOI: 10.1039/c9cc05598c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chirality transfer from small molecule to supramolecule was successfully achieved via regulation of dynamic covalent chemistry.
Collapse
Affiliation(s)
- Panpan Sun
- School of Bioscience and Technology
- Weifang Medical University
- Weifang
- P. R. China
- Key Laboratory of Colloid and Interface Chemistry
| | - Shujing Ren
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| | - Aoli Wu
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| | - Na Sun
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| | - Lijuan Shi
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| |
Collapse
|
21
|
Morais CM, Cardoso AM, Cunha PP, Aguiar L, Vale N, Lage E, Pinheiro M, Nunes C, Gomes P, Reis S, Castro MMCA, Pedroso de Lima MC, Jurado AS. Acylation of the S4 13-PV cell-penetrating peptide as a means of enhancing its capacity to mediate nucleic acid delivery: Relevance of peptide/lipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:2619-2634. [PMID: 30291923 DOI: 10.1016/j.bbamem.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/09/2018] [Accepted: 10/02/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cell-penetrating peptides (CPPs) have been extensively exploited in gene therapy approaches as vectors for intracellular delivery of bioactive molecules. The ability of CPPs to be internalized into cells and their capacity to complex nucleic acids depend on their molecular structure, both primary and secondary, namely regarding hydrophobicity/hydrophilicity. CPP acylation has been used as a strategy to improve this structural feature. METHODS Acyl groups (from 6 to 18 carbon atoms) were attached to the S413-PV peptide and their effects on the peptide competence to complex siRNAs and to mediate gene silencing in glioblastoma (GBM) cells were studied. A systematic characterization of membrane interactions with S413-PV acyl-derivatives was also conducted, using different biophysical techniques (surface pressure-area isotherms in Langmuir monolayers, DSC and 31P NMR) to unravel a relationship between CPP biological activity and CPP effects on membrane stability and lipid organization. RESULTS A remarkable concordance was noticed between acylated-S413-PV peptide competence to promote gene silencing in GBM cells and disturbance induced in membrane models, the lauroyl- and myristoyl-S413-PV peptides being the most effective. A cut-off effect was described for the first time regarding the influence of acyl-chain length on CPP bioactivity. CONCLUSIONS C12-S413-PV showed high capacity to destabilize lipid bilayers, to escape from lysosomal degradation and to mediate gene silencing without promoting cytotoxicity. GENERAL SIGNIFICANCE Besides unraveling a new CPP with high potential to be employed as a gene delivery vector, this work emphasizes the benefit from allying biophysical and biological studies towards a proper CPP structural refinement for successful pre-clinical/clinical application.
Collapse
Affiliation(s)
- Catarina M Morais
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Ana M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro P Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Luísa Aguiar
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Nuno Vale
- UCIBIO-REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Emílio Lage
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marina Pinheiro
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cláudia Nunes
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Salette Reis
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Margarida C A Castro
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal; Coimbra Chemistry Center, University of Coimbra, Coimbra, Portugal
| | | | - Amália S Jurado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
22
|
Wei Y, Zheng C, Zhang Z, Zeng Z, Mao T, Long S, Ling H. Synthesis, Surface Properties, and Antibacterial Activity of Novel Ester‐Containing Cationic Silicone Surfactants and Their Utilization as Fabric‐Finishing Agents. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuan Wei
- Department of Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Cheng Zheng
- Department of Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
- Guangzhou Vocational College of Science and Technology Guangzhou Guangdong 510550 China
| | - Zhenqiang Zhang
- Department of Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Zhaowen Zeng
- Department of Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Taoyan Mao
- Department of Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Shikang Long
- Department of Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Hui Ling
- Department of Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| |
Collapse
|
23
|
Silva J, Mendes M, Cova T, Sousa J, Pais A, Vitorino C. Unstructured Formulation Data Analysis for the Optimization of Lipid Nanoparticle Drug Delivery Vehicles. AAPS PharmSciTech 2018; 19:2383-2394. [PMID: 29869314 DOI: 10.1208/s12249-018-1078-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/17/2018] [Indexed: 01/31/2023] Open
Abstract
Designing nanoparticle formulations with features tailored to their therapeutic targets in demanding timelines assumes increased importance. In this context, nanostructured lipid carriers (NLCs) offer an excellent example of a drug delivery nanosystem that has been broadly explored in the treatment of glioblastoma multiforme (GBM). Distinct fundamental NLC quality attributes can be harnessed to fit this purpose, namely particle size, size distribution, and zeta potential. These critical aspects intrinsically depend on the formulation components, influencing drug loading capacity, drug release, and stability of the NLCs. Wide variations in their composition, including the type of lipids and other surface modifier excipients, lead to differences on these parameters. NLC target product profile involves small mean particle sizes, narrow size distributions, and absolute values of zeta potential higher than 30 mV. In this work, a wealth of data previously obtained in experiments on NLC preparation, encompassing, e.g., results of preliminary studies and those of intermediate formulations, is analyzed in order to extract information useful in further optimization studies. Principal component analysis (PCA) and partial least squares (PLS) are performed to evaluate the influence of NLC composition on the respective characteristics. These methods provide a rapid and discriminatory analysis for establishing a preformulation framework, by selecting the most suitable types of lipids, surfactants, surface modifiers, and drugs, within the set of investigated variables. The results have direct implications in the optimization of formulation and processes.
Collapse
|
24
|
Mendes M, Miranda A, Cova T, Gonçalves L, Almeida AJ, Sousa JJ, do Vale MLC, Marques EF, Pais A, Vitorino C. Modeling of ultra-small lipid nanoparticle surface charge for targeting glioblastoma. Eur J Pharm Sci 2018; 117:255-269. [PMID: 29486328 DOI: 10.1016/j.ejps.2018.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/29/2018] [Accepted: 02/21/2018] [Indexed: 01/31/2023]
Abstract
Surface modification of ultra-small nanostructured lipid carriers (usNLC) via introduction of a positive charge is hypothesized to prompt site-specific drug delivery for glioblastoma multiforme (GBM) treatment. A more effective interaction with negatively charged lipid bilayers, including the blood-brain barrier (BBB), will facilitate the nanoparticle access to the brain. For this purpose, usNLC with a particle size of 43.82 ± 0.03 nm and a polydispersity index of 0.224 were developed following a Quality by Design approach. Monomeric and gemini surfactants, either with conventional headgroups or serine-based ones, were tested for the surface modification, and the respective safety and efficacy to target GBM evaluated. A comprehensive in silico-in vitro approach is also provided based on molecular dynamics simulations and cytotoxicity studies. Overall, monomeric serine-derived surfactants displayed the best performance, considering altogether particle size, zeta potential, cytotoxic profile and cell uptake. Although conventional surfactants were able to produce usNLC with suitable physicochemical properties and cell uptake, their use is discouraged due to their high cytotoxicity. This study suggests that monomeric serine-derived surfactants are promising agents for developing nanosystems aiming at brain drug delivery.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Rua Larga, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal
| | - Ana Miranda
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Rua Larga, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal
| | - Tânia Cova
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - João J Sousa
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; LAQV - REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| | - Maria L C do Vale
- LAQV - REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| | - Eduardo F Marques
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Porto, 4169-007 Porto, Portugal
| | - Alberto Pais
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Rua Larga, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.
| |
Collapse
|
25
|
Łudzik K, Kustrzepa K, Kowalewicz-Kulbat M, Kontek R, Kontek B, Wróblewska A, Jóźwiak M, Lulo D. Antimicrobial and Cytotoxic Properties of Bisquaternary Ammonium Bromides of Different Spacer Length. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Katarzyna Łudzik
- Frank Laboratory of Neutron Physics; Joint Institute for Nuclear Research, Joliot-Curie 6, (Moscow Region); 141980 Dubna Russia
- Department of Physical Chemistry; University of Lodz, Faculty of Chemistry, Pomorska 165; Lodz 90-236 Poland
| | - Kinga Kustrzepa
- Department of Physical Chemistry; University of Lodz, Faculty of Chemistry, Pomorska 165; Lodz 90-236 Poland
| | - Magdalena Kowalewicz-Kulbat
- Faculty of Biology and Environmental Protection, Department of Immunology and Infectious Biology; University of Lodz, Banacha 12/16; 90-237 Lodz Poland
| | - Renata Kontek
- Faculty of Biology and Environmental Protection, Department of General Genetics, Molecular Biology and Biotechnology; University of Lodz, Banacha 12/16; 90-237 Lodz Poland
| | - Bogdan Kontek
- Department of General Biochemistry; University of Lodz, Faculty of Biology and Environmental Protection, Pomorska 141/143; 90-236 Lodz Poland
| | - Aneta Wróblewska
- Polish Academy of Sciences; Center of Molecular and Macromolecular Studies, Sienkiewicza 112; 90-236 Lodz Poland
| | - Małgorzata Jóźwiak
- Department of Physical Chemistry; University of Lodz, Faculty of Chemistry, Pomorska 165; Lodz 90-236 Poland
| | - Daria Lulo
- Department of Physical Chemistry; University of Lodz, Faculty of Chemistry, Pomorska 165; Lodz 90-236 Poland
| |
Collapse
|
26
|
Fernandes RMF, Wang Y, Tavares PB, Nunes SCC, Pais AACC, Marques EF. Critical Role of the Spacer Length of Gemini Surfactants on the Formation of Ionic Liquid Crystals and Thermotropic Behavior. J Phys Chem B 2017; 121:10583-10592. [DOI: 10.1021/acs.jpcb.7b08618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ricardo M. F. Fernandes
- CIQUP,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Yujie Wang
- CIQUP,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- School of Chemistry & Chemical Engineering, Henan Institute of Science & Technology, Xinxiang 453003, Henan, People’s Republic of China
| | - Pedro B. Tavares
- CQVR
- Centro de Química de Vila Real, Departamento de Química, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Sandra C. C. Nunes
- CQC
- Centro de Química de Coimbra, Department of Chemistry, University of Coimbra, Rua Larga 3004-535, Coimbra, Portugal
| | - Alberto A. C. C. Pais
- CQC
- Centro de Química de Coimbra, Department of Chemistry, University of Coimbra, Rua Larga 3004-535, Coimbra, Portugal
| | - Eduardo F. Marques
- CIQUP,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
27
|
Chauhan S, Atika, Singh K, Singh K, Kaur M, Chauhan M. A relative study on the micellization behavior of 12–2–12 Gemini surfactant with lactose and maltodextrin in aqueous medium: Spectroscopic and conductometric analysis. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Zhang Z, Wang Y, Lu J, Zhang C, Wang M, Li M, Liu X, Wang F. Conversion of Isobutene and Formaldehyde to Diol using Praseodymium-Doped CeO2 Catalyst. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02134] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhixin Zhang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- State
Key Laboratory of Fine Chemicals, Faculty of Chemical Environmental
and Biological Science and Technology, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Yehong Wang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jianmin Lu
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Chaofeng Zhang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Min Wang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Mingrun Li
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Xuebin Liu
- Energy
Innovation Laboratory, BP Office (Dalian Institute of Chemical Physics), Dalian 116023, People’s Republic of China
| | - Feng Wang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
29
|
Costa C, Francisco V, Silva SG, do Vale MLC, García-Río L, Marques EF. Supramolecular self-assembly between an amino acid-based surfactant and a sulfonatocalixarene driven by electrostatic interactions. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.03.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Teixeira RS, Cova TF, Silva SM, Oliveira R, do Vale MLC, Marques EF, Pais AA, Veiga FJ. Novel serine-based gemini surfactants as chemical permeation enhancers of local anesthetics: A comprehensive study on structure–activity relationships, molecular dynamics and dermal delivery. Eur J Pharm Biopharm 2015; 93:205-13. [DOI: 10.1016/j.ejpb.2015.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/10/2015] [Accepted: 02/26/2015] [Indexed: 11/25/2022]
|
31
|
Silva SG, Vale MLCD, Marques EF. Size, Charge, and Stability of Fully Serine-Based Catanionic Vesicles: Towards Versatile Biocompatible Nanocarriers. Chemistry 2015; 21:4092-101. [DOI: 10.1002/chem.201406111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Indexed: 12/21/2022]
|
32
|
Silva SG, Oliveira IS, do Vale MLC, Marques EF. Serine-based gemini surfactants with different spacer linkages: from self-assembly to DNA compaction. SOFT MATTER 2014; 10:9352-9361. [PMID: 25342304 DOI: 10.1039/c4sm01771d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cationic gemini surfactants have strong potential as compaction agents of nucleic acids for efficient non-viral gene delivery. In this work, we present the aggregation behavior of three novel cationic serine-based gemini surfactants as well as their ability to compact DNA per se and mixed with a helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). All the surfactants have a 12-12-12 configuration, i.e. two main 12-carbon alkyl chains linked to the nitrogen atom of the amino acid residue and a 12 methylene spacer, but they differ in the nature of the spacer linkage: for (12Ser)2N12, an amine bond; for (12Ser)2CON12, an amide bond; and for (12Ser)2COO12, an ester bond. Interestingly, while the amine-based gemini aggregates into micelles, the amide and ester ones spontaneously form vesicles, which denotes a strong influence of the type of linkage on the surfactant packing parameter. The size, ζ-potential and stability of the vesicles have been characterized by light microscopy, cryogenic scanning electron microscopy (cryo-SEM) and dynamic light scattering (DLS). The interaction of the gemini aggregates with DNA at different charge ratios and in the absence and presence of DOPE has been studied by DLS, fluorescence spectroscopy and cryo-SEM. All the compounds are found to efficiently compact DNA (complexation > 90%), but relevant differences are obtained in terms of the size, ζ-potential and stability of the lipoplexes formed. Results are rationalized in terms of headgroup differences and the type of aggregates present prior to DNA condensation.
Collapse
Affiliation(s)
- Sandra G Silva
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do campo Alegre s/n, P 4169-007 Porto, Portugal.
| | | | | | | |
Collapse
|
33
|
Cardoso AM, Morais CM, Cruz AR, Silva SG, do Vale ML, Marques EF, de Lima MCP, Jurado AS. New serine-derived gemini surfactants as gene delivery systems. Eur J Pharm Biopharm 2014; 89:347-56. [PMID: 25513958 DOI: 10.1016/j.ejpb.2014.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 11/18/2022]
Abstract
Gemini surfactants have been extensively used for in vitro gene delivery. Amino acid-derived gemini surfactants combine the special aggregation properties characteristic of the gemini surfactants with high biocompatibility and biodegradability. In this work, novel serine-derived gemini surfactants, differing in alkyl chain lengths and in the linker group bridging the spacer to the headgroups (amine, amide and ester), were evaluated for their ability to mediate gene delivery either per se or in combination with helper lipids. Gemini surfactant-based DNA complexes were characterized in terms of hydrodynamic diameter, surface charge, stability in aqueous buffer and ability to protect DNA. Efficient formulations, able to transfect up to 50% of the cells without causing toxicity, were found at very low surfactant/DNA charge ratios (1/1-2/1). The most efficient complexes presented sizes suitable for intravenous administration and negative surface charge, a feature known to preclude potentially adverse interactions with serum components. This work brings forward a new family of gemini surfactants with great potential as gene delivery systems.
Collapse
Affiliation(s)
- Ana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Catarina M Morais
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - A Rita Cruz
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Sandra G Silva
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, University of Porto, Porto, Portugal
| | - M Luísa do Vale
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, University of Porto, Porto, Portugal
| | - Eduardo F Marques
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, University of Porto, Porto, Portugal
| | - Maria C Pedroso de Lima
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Amália S Jurado
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
34
|
Teixeira RS, Cova TFGG, Silva SMC, Oliveira R, Araújo MJ, Marques EF, Pais AACC, Veiga FJB. Lysine-based surfactants as chemical permeation enhancers for dermal delivery of local anesthetics. Int J Pharm 2014; 474:212-22. [PMID: 25108047 DOI: 10.1016/j.ijpharm.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022]
Abstract
The aim of this study is to investigate the efficacy of new, biocompatible, lysine-based surfactants as chemical permeation enhancers for two different local anesthetics, tetracaine and ropivacaine hydrochloride, topically administered. Results show that this class of surfactants strongly influences permeation, especially in the case of the hydrophilic and ionized drug, ropivacaine hydrochloride, that is not easily administered through the stratum corneum. It is also seen that the selected permeation enhancers do not have significant deleterious effects on the skin structure. A cytotoxicity profile for each compound was established from cytotoxicity studies. Molecular dynamics simulation results provided a rationale for the experimental observations, introducing a mechanistic view of the action of the surfactants molecules upon lipid membranes.
Collapse
Affiliation(s)
- Raquel S Teixeira
- Pharmaceutical Technology Department, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tânia F G G Cova
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Sérgio M C Silva
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Rita Oliveira
- Life Sciences Department, Fernando Pessoa University, 4249-004 Porto, Portugal
| | - Maria J Araújo
- CIQ-UP, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Eduardo F Marques
- CIQ-UP, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Alberto A C C Pais
- Life Sciences Department, Fernando Pessoa University, 4249-004 Porto, Portugal
| | - Francisco J B Veiga
- Pharmaceutical Technology Department, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
35
|
Gemini surfactants from natural amino acids. Adv Colloid Interface Sci 2014; 205:134-55. [PMID: 24238395 DOI: 10.1016/j.cis.2013.10.020] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/23/2022]
Abstract
In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed.
Collapse
|
36
|
Synthesis and Performance of a Multi-Purpose Gemini Precursor and the Derivative Alkylaryl Sulfonate Gemini Surfactants. J SURFACTANTS DETERG 2013. [DOI: 10.1007/s11743-013-1550-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Brito RO, Oliveira IS, Araújo MJ, Marques EF. Morphology, Thermal Behavior, and Stability of Self-Assembled Supramolecular Tubules from Lysine-Based Surfactants. J Phys Chem B 2013; 117:9400-11. [DOI: 10.1021/jp400127k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rodrigo O. Brito
- Centro de Investigação
em Química, Department of Chemistry and Biochemistry, University of Porto, Rua do Campo Alegre,
s/n, 4169-007
Porto, Portugal
| | - Isabel S. Oliveira
- Centro de Investigação
em Química, Department of Chemistry and Biochemistry, University of Porto, Rua do Campo Alegre,
s/n, 4169-007
Porto, Portugal
| | - Maria J. Araújo
- Centro de Investigação
em Química, Department of Chemistry and Biochemistry, University of Porto, Rua do Campo Alegre,
s/n, 4169-007
Porto, Portugal
| | - Eduardo F. Marques
- Centro de Investigação
em Química, Department of Chemistry and Biochemistry, University of Porto, Rua do Campo Alegre,
s/n, 4169-007
Porto, Portugal
| |
Collapse
|