1
|
Savva L, Fossépré M, Keramidas O, Themistokleous A, Rizeq N, Panagiotou N, Leclercq M, Nicolaidou E, Surin M, Hayes SC, Georgiades SN. Gaining Insights on the Interactions of a Class of Decorated (2-([2,2'-Bipyridin]-6-yl)phenyl)platinum Compounds with c-Myc Oncogene Promoter G-Quadruplex and Other DNA Structures. Chemistry 2022; 28:e202201497. [PMID: 35726630 PMCID: PMC9804160 DOI: 10.1002/chem.202201497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 01/05/2023]
Abstract
Organometallic molecules offer some of the most promising scaffolds for interaction with G-quadruplex nucleic acids. We report the efficient synthesis of a family of organoplatinum(II) complexes, featuring a 2-([2,2'-bipyridin]-6-yl)phenyl tridentate (N∧ N∧ C) ligand, that incorporates peripheral side-chains aiming at enhancing and diversifying its interaction capabilities. These include a di-isopropyl carbamoyl amide, a morpholine ethylenamide, two enantiomeric proline imides and an oxazole. The binding affinities of the Pt-complexes were evaluated via UV-vis and fluorescence titrations, against 5 topologically-distinct DNA structures, including c-myc G-quadruplex, two telomeric (22AG) G-quadruplexes, a duplex (ds26) and a single-stranded (polyT) DNA. All compounds exhibited binding selectivity in favour of c-myc, with association constants (Ka ) in the range of 2-5×105 M-1 , lower affinity for both folds of 22AG and for ds26 and negligible affinity for polyT. Remarkable emission enhancements (up to 200-fold) upon addition of excess DNA were demonstrated by a subset of the compounds with c-myc, providing a basis for optical selectivity, since optical response to all other tested DNAs was low. A c-myc DNA-melting experiment showed significant stabilizing abilities for all compounds, with the most potent binder, the morpholine-Pt-complex, exhibiting a ΔTm >30 °C, at 1 : 5 DNA-to-ligand molar ratio. The same study implied contributions of the diverse side-chains to helix stabilization. To gain direct evidence of the nature of the interactions, mixtures of c-myc with the four most promising compounds were studied via UV Resonance Raman (UVRR) spectroscopy, which revealed end-stacking binding mode, combined with interactions of side-chains with loop nucleobase residues. Docking simulations were conducted to provide insights into the binding modes for the same four Pt-compounds, suggesting that the binding preference for two alternative orientations of the c-myc G-quadruplex thymine 'cap' ('open' vs. 'closed'), as well as the relative contributions to affinity from end-stacking and H-bonding, are highly dependent on the nature of the interacting Pt-complex side-chain.
Collapse
Affiliation(s)
- Loukiani Savva
- Department of ChemistryUniversity of Cyprus1 Panepistimiou Avenue, Aglandjia2109NicosiaCyprus
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel MaterialsUniversity of Mons – UMONS20 Place du ParcB-7000MonsBelgium
| | - Odysseas Keramidas
- Department of ChemistryUniversity of Cyprus1 Panepistimiou Avenue, Aglandjia2109NicosiaCyprus
| | | | - Natalia Rizeq
- Department of ChemistryUniversity of Cyprus1 Panepistimiou Avenue, Aglandjia2109NicosiaCyprus
| | - Nikos Panagiotou
- Department of ChemistryUniversity of Cyprus1 Panepistimiou Avenue, Aglandjia2109NicosiaCyprus
| | - Maxime Leclercq
- Laboratory for Chemistry of Novel MaterialsUniversity of Mons – UMONS20 Place du ParcB-7000MonsBelgium
| | - Eliana Nicolaidou
- Department of ChemistryUniversity of Cyprus1 Panepistimiou Avenue, Aglandjia2109NicosiaCyprus
| | - Mathieu Surin
- Laboratory for Chemistry of Novel MaterialsUniversity of Mons – UMONS20 Place du ParcB-7000MonsBelgium
| | - Sophia C. Hayes
- Department of ChemistryUniversity of Cyprus1 Panepistimiou Avenue, Aglandjia2109NicosiaCyprus
| | - Savvas N. Georgiades
- Department of ChemistryUniversity of Cyprus1 Panepistimiou Avenue, Aglandjia2109NicosiaCyprus
| |
Collapse
|
2
|
Chen L, Peng RJ, Zhang XJ, Yan M, Chan ASC. Aromatic C-H Methylation and Other Functionalizations via the Rh(III)-Catalyzed Migratory Insertion of Bis(phenylsulfonyl)carbene and Subsequent Transformations. J Org Chem 2021; 86:10177-10189. [PMID: 34242504 DOI: 10.1021/acs.joc.1c00899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Rh(III)-catalyzed migratory insertion of bis(phenylsulfonyl)carbene into aromatic C-H bonds has been developed. A variety of bis(phenylsulfonyl)methyl derivatives were prepared with good yields under mild conditions. The methylated products were readily obtained after reductive desulfonylation. Furthermore, the diverse transformations of bis(phenylsulfonyl)methyl to trideuteriomethyl, aldehyde, and other functional groups were demonstrated.
Collapse
Affiliation(s)
- Lei Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rui-Jun Peng
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Albert S C Chan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Andreeva DV, Tikhomirov AS, Shchekotikhin AE. Ligands of G-quadruplex nucleic acids. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Søborg Pedersen K, Baun C, Michaelsen Nielsen K, Thisgaard H, Ingemann Jensen A, Zhuravlev F. Design, Synthesis, Computational, and Preclinical Evaluation of natTi/ 45Ti-Labeled Urea-Based Glutamate PSMA Ligand. Molecules 2020; 25:molecules25051104. [PMID: 32131399 PMCID: PMC7179113 DOI: 10.3390/molecules25051104] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022] Open
Abstract
Despite promising anti-cancer properties in vitro, all titanium-based pharmaceuticals have failed in vivo. Likewise, no target-specific positron emission tomography (PET) tracer based on the radionuclide 45Ti has been developed, notwithstanding its excellent PET imaging properties. In this contribution, we present liquid–liquid extraction (LLE) in flow-based recovery and the purification of 45Ti, computer-aided design, and the synthesis of a salan-natTi/45Ti-chelidamic acid (CA)-prostate-specific membrane antigen (PSMA) ligand containing the Glu-urea-Lys pharmacophore. The compound showed compromised serum stability, however, no visible PET signal from the PC3+ tumor was seen, while the ex vivo biodistribution measured the tumor accumulation at 1.1% ID/g. The in vivo instability was rationalized in terms of competitive citrate binding followed by Fe(III) transchelation. The strategy to improve the in vivo stability by implementing a unimolecular ligand design is presented.
Collapse
Affiliation(s)
- Kristina Søborg Pedersen
- Department of Health Technology, Technical University of Denmark, Frederiksborgvej 399, Building 202, 4000 Roskilde, Denmark; (K.S.P.); (K.M.N.); (A.I.J.)
| | - Christina Baun
- Department of Clinical Research, University of Southern Denmark, Sønder Boulevard 29, DK-5000 Odense, Denmark; (C.B.); (H.T.)
- Department of Nuclear Medicine, Odense University Hospital, DK-5000 Odense, Denmark
| | - Karin Michaelsen Nielsen
- Department of Health Technology, Technical University of Denmark, Frederiksborgvej 399, Building 202, 4000 Roskilde, Denmark; (K.S.P.); (K.M.N.); (A.I.J.)
| | - Helge Thisgaard
- Department of Clinical Research, University of Southern Denmark, Sønder Boulevard 29, DK-5000 Odense, Denmark; (C.B.); (H.T.)
- Department of Nuclear Medicine, Odense University Hospital, DK-5000 Odense, Denmark
| | - Andreas Ingemann Jensen
- Department of Health Technology, Technical University of Denmark, Frederiksborgvej 399, Building 202, 4000 Roskilde, Denmark; (K.S.P.); (K.M.N.); (A.I.J.)
| | - Fedor Zhuravlev
- Department of Health Technology, Technical University of Denmark, Frederiksborgvej 399, Building 202, 4000 Roskilde, Denmark; (K.S.P.); (K.M.N.); (A.I.J.)
- Correspondence: ; Tel.: +45-4677-5337
| |
Collapse
|
5
|
Oxadiazole/Pyridine-Based Ligands: A Structural Tuning for Enhancing G-Quadruplex Binding. Molecules 2018; 23:molecules23092162. [PMID: 30154319 PMCID: PMC6225118 DOI: 10.3390/molecules23092162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
Non-macrocyclic heteroaryls represent a valuable class of ligands for nucleic acid recognition. In this regard, non-macrocyclic pyridyl polyoxazoles and polyoxadiazoles were recently identified as selective G-quadruplex stabilizing compounds with high cytotoxicity and promising anticancer activity. Herein, we describe the synthesis of a new family of heteroaryls containing oxadiazole and pyridine moieties targeting DNA G-quadruplexes. To perform a structure–activity analysis identifying determinants of activity and selectivity, we followed a convergent synthetic pathway to modulate the nature and number of the heterocycles (1,3-oxazole vs. 1,2,4-oxadiazole and pyridine vs. benzene). Each ligand was evaluated towards secondary nucleic acid structures, which have been chosen as a prototype to mimic cancer-associated G-quadruplex structures (e.g., the human telomeric sequence, c-myc and c-kit promoters). Interestingly, heptapyridyl-oxadiazole compounds showed preferential binding towards the telomeric sequence (22AG) in competitive conditions vs. duplex DNA. In addition, G4-FID assays suggest a different binding mode from the classical stacking on the external G-quartet. Additionally, CD titrations in the presence of the two most promising compounds for affinity, TOxAzaPy and TOxAzaPhen, display a structural transition of 22AG in K-rich buffer. This investigation suggests that the pyridyl-oxadiazole motif is a promising recognition element for G-quadruplexes, combining seven heteroaryls in a single binding unit.
Collapse
|
6
|
Abstract
Guanine-rich nucleic acid sequences able to form four-stranded structures (G-quadruplexes, G4) play key cellular regulatory roles and are considered as promising drug targets for anticancer therapy. On the basis of the organization of their structural elements, G4 ligands can be divided into three major families: one, fused heteroaromatic polycyclic systems; two, macrocycles; three, modular aromatic compounds. The design of modular G4 ligands emerged as the answer to achieve not only more drug-like compounds but also more selective ligands by targeting the diversity of the G4 loops and grooves. The rationale behind the design of a very comprehensive set of ligands, with particular focus on the structural features required for binding to G4, is discussed and combined with the corresponding biochemical/biological data to highlight key structure-G4 interaction relationships. Analysis of the data suggests that the shape of the ligand is the major factor behind the G4 stabilizing effect of the ligands. The information here critically reviewed will certainly contribute to the development of new and better G4 ligands with application either as therapeutics or probes.
Collapse
Affiliation(s)
- Ana Rita Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Enrico Cadoni
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana S Ressurreição
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Paulo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Investigation of 'Head-to-Tail'-Connected Oligoaryl N,O-Ligands as Recognition Motifs for Cancer-Relevant G-Quadruplexes. Molecules 2017; 22:molecules22122160. [PMID: 29210998 PMCID: PMC6149995 DOI: 10.3390/molecules22122160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/22/2017] [Accepted: 12/02/2017] [Indexed: 12/11/2022] Open
Abstract
Oligomeric compounds, constituted of consecutive N,O-heteroaromatic rings, introduce useful and tunable properties as alternative ligands for biomolecular recognition. In this study, we have explored a synthetic scheme relying on Van Leusen oxazole formation, in conjunction with C–H activation of the formed oxazoles and their subsequent C–C cross-coupling to 2-bromopyridines in order to assemble a library of variable-length, ‘head-to-tail’-connected, pyridyl-oxazole ligands. Through investigation of the interaction of the three longer ligands (5-mer, 6-mer, 7-mer) with cancer-relevant G-quadruplex structures (human telomeric/22AG and c-Myc oncogene promoter/Myc2345-Pu22), the asymmetric pyridyl-oxazole motif has been demonstrated to be a prominent recognition element for G-quadruplexes. Fluorescence titrations reveal excellent binding affinities of the 7-mer and 6-mer for a Na+-induced antiparallel 22AG G-quadruplex (KD = 0.6 × 10−7 M−1 and 0.8 × 10−7 M−1, respectively), and satisfactory (albeit lower) affinities for the 22AG/K+ and Myc2345-Pu22/K+ G-quadruplexes. All ligands tested exhibit substantial selectivity for G-quadruplex versus duplex (ds26) DNA, as evidenced by competitive Förster resonance energy transfer (FRET) melting assays. Additionally, the 7-mer and 6-mer are capable of promoting a sharp morphology transition of 22AG/K+ G-quadruplex.
Collapse
|