1
|
Juang YP, Chou YT, Lin RX, Ma HH, Chao TL, Jan JT, Chang SY, Liang PH. Design, synthesis and biological evaluations of niclosamide analogues against SARS-CoV-2. Eur J Med Chem 2022; 235:114295. [PMID: 35344901 PMCID: PMC8933873 DOI: 10.1016/j.ejmech.2022.114295] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 01/17/2023]
Abstract
Niclosamide, a widely-used anthelmintic drug, inhibits SARS-CoV-2 virus entry through TMEM16F inhibition and replication through autophagy induction, but the relatively high cytotoxicity and poor oral bioavailability limited its application. We synthesized 22 niclosamide analogues of which compound 5 was found to exhibit the best anti-SARS-CoV-2 efficacy (IC50 = 0.057 μ M) and compounds 6, 10, and 11 (IC50 = 0.39, 0.38, and 0.49 μ M, respectively) showed comparable efficacy to niclosamide. On the other hand, compounds 5, 6, 11 contained higher stability in human plasma and liver S9 enzymes assay than niclosamide, which could improve bioavailability and half-life when administered orally. Fluorescence microscopy revealed that compound 5 exhibited better activity in the reduction of phosphatidylserine externalization compared to niclosamide, which was related to TMEM16F inhibition. The AI-predicted protein structure of human TMEM16F protein was applied for molecular docking, revealing that 4'-NO2 of 5 formed hydrogen bonding with Arg809, which was blocked by 2'-Cl in the case of niclosamide.
Collapse
Affiliation(s)
- Yu-Pu Juang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yu-Ting Chou
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Ru-Xian Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Hsiu-Hua Ma
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Science and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Science and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 100, Taiwan,Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan,Corresponding author. School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| |
Collapse
|
2
|
Gernet A, Sevrain N, Volle JN, Ayad T, Pirat JL, Virieux D. Diversity-Oriented Synthesis toward Aryl- and Phosphoryl-Functionalized Imidazo[1,2- a]pyridines. J Org Chem 2020; 85:14730-14743. [PMID: 33166470 DOI: 10.1021/acs.joc.0c02059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report herein an efficient synthesis of diversely polysubstituted imidazo[1,2-a]pyridines, a family of aza-heterocycles endowed with numerous biological properties, through a sequence involving two consecutive palladium-catalyzed cross-coupling reactions. First, we demonstrated that a Hirao coupling occurred straightforwardly in high yields at positions 3, 5, and 6 of imidazopyridine derivatives, giving access to a wide variety of substituted phosphonates, phosphinates, and phosphine oxides. In a second step, direct CH-arylation of phosphorylimidazopyridines with aryl halides was found to be effective and fully selective, leading to 3-aryl-substituted imidazopyridines in moderate to high yields depending on steric hindrance.
Collapse
Affiliation(s)
- Aurélie Gernet
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| | - Nicolas Sevrain
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| | - Jean-Noël Volle
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| | - Tahar Ayad
- PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Jean-Luc Pirat
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| | - David Virieux
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| |
Collapse
|
3
|
Hernández-Guerra D, Kennedy AR, León EI, Martín Á, Pérez-Martín I, Rodríguez MS, Suárez E. Synthetic Approaches to Phosphasugars (2-oxo-1,2-oxaphosphacyclanes) Using the Anomeric Alkoxyl Radical β-Fragmentation Reaction as the Key Step. J Org Chem 2020; 85:4861-4880. [PMID: 32174121 DOI: 10.1021/acs.joc.0c00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anomeric alkoxyl radical β-fragmentation (ARF) of carbohydrates possessing an electron-withdrawing group (EWG) at C2, promoted by PhI(OAc)2/I2, gives rise to an acyclic iodide through which a pentavalent atom of phosphorus can be introduced via the Arbuzov reaction. After selective hydrolysis and subsequent cyclization, the phosphonate or phosphinate intermediates can be converted into 2-deoxy-1-phosphahexopyranose and 2-deoxy-1-phosphapentopyranose sugars. The ARF of carbohydrates with an electron-donor group (EDG) at C2 proceeds by a radical-polar crossover mechanism, and the cyclization occurs by nucleophilic attack of a conveniently positioned phosphonate or phosphinate group to the transient oxocarbenium ion. This alternative methodology leads to 5-phosphasugars with a 4-deoxy-5-phosphapentopyranose framework. The structure and conformation of the 2-oxo-1,2-oxaphosphinane and 2-oxo-1,2-oxaphospholane ring systems in different carbohydrate models have been studied by NMR and X-ray crystallography.
Collapse
Affiliation(s)
- Daniel Hernández-Guerra
- Sı́ntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiologı́a del CSIC, Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| | - Alan R Kennedy
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| | - Elisa I León
- Sı́ntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiologı́a del CSIC, Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| | - Ángeles Martín
- Sı́ntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiologı́a del CSIC, Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| | - Inés Pérez-Martín
- Sı́ntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiologı́a del CSIC, Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| | - María S Rodríguez
- Sı́ntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiologı́a del CSIC, Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| | - Ernesto Suárez
- Sı́ntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiologı́a del CSIC, Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| |
Collapse
|
4
|
Tamburrini A, Colombo C, Bernardi A. Design and synthesis of glycomimetics: Recent advances. Med Res Rev 2020; 40:495-531. [DOI: 10.1002/med.21625] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Alice Tamburrini
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| | - Cinzia Colombo
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| | - Anna Bernardi
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| |
Collapse
|
5
|
Kumar A, Gannedi V, Rather SA, Vishwakarma RA, Ahmed QN. Introducing Oxo-Phenylacetyl (OPAc) as a Protecting Group for Carbohydrates. J Org Chem 2019; 84:4131-4148. [PMID: 30888192 DOI: 10.1021/acs.joc.9b00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of oxo-phenylacetyl (OPAc)-protected saccharides, with divergent base sensitivity profiles against benzoyl (Bz) and acetyl (Ac) were synthesized, and KHSO5/AcCl in methanol was identified as an easy, mild, selective, and efficient deprotecting reagent for their removal in the perspective of carbohydrate synthesis. Timely monitoring of AcCl reagent was supportive in both sequential and simultaneous deprotecting of OPAc, Bz, and Ac. The salient feature of our method is the orthogonal stability against different groups, its ease to generate different valuable acceptors using designed monosaccharides, and use of OPAc as a glycosyl donar.
Collapse
Affiliation(s)
- Atul Kumar
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Veeranjaneyulu Gannedi
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Suhail A Rather
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India
| | - Qazi Naveed Ahmed
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| |
Collapse
|
6
|
Sarkar V, Mukhopadhyay B. Synthesis of the tetrasaccharide related to the repeating unit of the O-antigen from Azospirillum brasilense Jm125A2 in the form of its 2-aminoethyl glycoside. Carbohydr Res 2018; 470:13-18. [PMID: 30292926 DOI: 10.1016/j.carres.2018.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 01/11/2023]
Abstract
Total chemical synthesis of the linear tetrasaccharide repeating unit β-D-Glc-(1 → 2)-α-L-Rha-(1 → 3)-α-L-Rha-(1 → 2)-α-L-Rha-CH2CH2NH2 of the O-antigen from Azospirillum brasilense Jm125A2 is accomplished through rational protecting group manipulations of commercially available monosaccharides and stereoselective glycosylations. The target tetrasaccharide in the form of its 2-aminoethyl glycoside is obtained in ∼24% yield over 10 steps following a linear strategy. The structure is particularly suitable for further glycoconjugate formation through the terminal free amine without hampering the reducing end stereochemistry.
Collapse
Affiliation(s)
- Vikramjit Sarkar
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Balaram Mukhopadhyay
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India.
| |
Collapse
|