1
|
Yu LM, Chen H, Fang W, Cai R, Tao Y, Li Y, Dong H. Recent advances in oxidative dearomatization involving C-H bonds for constructing value-added oxindoles. Org Biomol Chem 2024; 22:7074-7091. [PMID: 39157861 DOI: 10.1039/d4ob00766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Exploring three-dimensional chemical space is an important research objective of organic synthetic chemistry. Oxidative dearomatization (ODA) is one of the most important and powerful tools for realizing this goal, because it changes and removes aromatic structures from aromatic compounds to increase levels of saturation and stereoisomerism by direct addition reactions between functional groups with aromatic cores under oxidative conditions. As a hot topic in indole chemistry, the synthetic value of the oxidative dearomatization of indoles has been well recognized and has witnessed rapid development recently, since it could provide convenient and unprecedented access to fabricate high-value-added three-dimensional oxindole skeletons, such as C-quaternary indolones, polycycloindolones and spiroindolones, and be widely applied to the total synthesis of these oxindole alkaloids. Therefore, this article provides a review of recent developments in oxidative dearomatization involving the C-H bonds of indoles. In this article, the features and mechanisms of different types of ODA reactions of indoles are summarized and represented, and asymmetric synthesis methods and their applications are illustrated with examples, and future development trends in this field are predicted at the end.
Collapse
Affiliation(s)
- Le-Mao Yu
- College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310018, China.
- Green Pharmaceuticals and Processes Research Centre, Shaoxing University, Shaoxing, 312000, China
| | - Haojin Chen
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Wenjing Fang
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Ruonan Cai
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yi Tao
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yong Li
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Huaping Dong
- Green Pharmaceuticals and Processes Research Centre, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
2
|
Xu H, Yamaguchi S, Mitsudome T, Mizugaki T. Green Oxidation of Indoles Using Molecular Oxygen over a Copper Nitride Nanocube Catalyst. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hang Xu
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Department of Materials Science Engineering Toyonaka JAPAN
| | - Sho Yamaguchi
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Department of Materials Science Engineering Toyonaka JAPAN
| | - Takato Mitsudome
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Department of Materials Science Engineering Toyonaka JAPAN
| | - Tomoo Mizugaki
- Osaka University Department of Materials Engineering Science, Graduate School of Engineering Science 1-3 Machikaneyama 560-8531 Toyonaka, Osaka JAPAN
| |
Collapse
|
3
|
Santoso M, Ong LL, Ajijiyah NP, Wati FA, Azminah A, Annuur RM, Fadlan A, Judeh ZM. Synthesis, α-glucosidase inhibition, α-amylase inhibition, and molecular docking studies of 3,3-di(indolyl)indolin-2-ones. Heliyon 2022; 8:e09045. [PMID: 35287328 PMCID: PMC8917276 DOI: 10.1016/j.heliyon.2022.e09045] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/03/2021] [Accepted: 03/01/2022] [Indexed: 11/03/2022] Open
Abstract
The synthesized 3,3-di(indolyl)indolin-2-ones 1a-p showed desired higher α-glucosidase inhibitory activities and lower α-amylase inhibitory activities than standard drug acarbose. Particularly, compound 1i showed favorable higher α-glucosidase % inhibition of 67 ± 13 and lower α-amylase % inhibition of 51 ± 4 in comparison to acarbose with % inhibition activities of 19 ± 5 and 90 ± 2, respectively. Docking studies of selected 3,3-di(indolyl)indolin-2-ones revealed key interactions with the active sites of both α-glucosidase and α-amylase, further supporting the observed % inhibitory activities. Furthermore, the binding energies are consistent with the % inhibition values. The results suggest that 3,3-di(indolyl)indolin-2-ones may be developed as suitable Alpha Glucosidase Inhibitors (AGIs) and the lower α-amylase activities should be advantageous to reduce the side effects exhibited by commercial AGIs.
Collapse
|
4
|
Dong Y, Qian JH, Chen XL, Jiang H, Li X, Zhou Q, Mei T, Shi ZC, Li ZH, He B. Metal-free synthesis of C2-quaternary indolinones by (NH 4) 2S 2O 8 mediated oxidative dearomatization of indoles. RSC Adv 2022; 12:21022-21025. [PMID: 35919833 PMCID: PMC9301541 DOI: 10.1039/d2ra04191j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
An efficient metal-free, (NH4)2S2O8 mediated oxidative dearomatization of indoles for the construction of C2-quaternary indolinones was disclosed. A series of C2-quaternary indolinones derivatives with good functional group tolerance were obtained in moderate to excellent yields. This methodology provides an alternative approach for the direct generation of all-carbon quaternary centers at the C2 position of indoles. This catalytic approach represents a step-economic and convenient strategy for the oxidative dearomatization of indoles. An efficient metal-free, (NH4)2S2O8 mediated oxidative dearomatization of indoles for construction of C2-quaternary indolinones was disclosed which provides an approach for generation of all-carbon quaternary centers at the C2 position of indoles.![]()
Collapse
Affiliation(s)
- Yu Dong
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - Jun-Hu Qian
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - Xiang-Long Chen
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - Hui Jiang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - Xue Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - Qiang Zhou
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - Ting Mei
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - Zhi-Chuan Shi
- Southwest Minzu University, Chengdu 610041, P. R. China
| | - Zhong-Hui Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - Bing He
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| |
Collapse
|
5
|
Xu F, Smith MW. A general approach to 2,2-disubstituted indoxyls: total synthesis of brevianamide A and trigonoliimine C. Chem Sci 2021; 12:13756-13763. [PMID: 34760160 PMCID: PMC8549782 DOI: 10.1039/d1sc03533a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
The indoxyl unit is a common structural motif in alkaloid natural products and bioactive compounds. Here, we report a general method that transforms readily available 2-substituted indoles into 2,2-disubstituted indoxyls via nucleophile coupling with a 2-alkoxyindoxyl intermediate and showcase its utility in short total syntheses of the alkaloids brevianamide A (7 steps) and trigonoliimine C (6 steps). The developed method is operationally simple and demonstrates broad scope in terms of nucleophile identity and indole substitution, tolerating 2-alkyl substituents and free indole N-H groups, elements beyond the scope of most prior approaches. Spirocyclic indoxyl products are also accessible via intramolecular nucleophilic trapping.
Collapse
Affiliation(s)
- Fan Xu
- Department of Biochemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd Dallas Texas 75390 USA
| | - Myles W Smith
- Department of Biochemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd Dallas Texas 75390 USA
| |
Collapse
|
6
|
Zhang W, Xiang S, Fan W, Jin J, Li Y, Huang D. A three-component iodine-catalyzed oxidative coupling reaction: a heterodifunctionalization of 3-methylindoles. Org Biomol Chem 2021; 19:5794-5799. [PMID: 34109340 DOI: 10.1039/d1ob00730k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A metal-free method for the synthesis of heterodifunctional indole derivatives is developed through TBHP/KI-mediated oxidative coupling. The reaction constructs C-O and C-C bonds in succession with the help of tert-butyl peroxy radicals generated by the TBHP/KI catalytic system, enabling the direct realization of the heterodifunctionalization of indole in one pot. The product of this reaction is a novel heterodifunctional compound. This work might provide a new effective method for the synthesis of polycyclic indole compounds.
Collapse
Affiliation(s)
- Wei Zhang
- Fujian Normal University, College of Chemistry and Materials Science, Fuzhou 350007, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shiqun Xiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jiang Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Deguang Huang
- Fujian Normal University, College of Chemistry and Materials Science, Fuzhou 350007, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
7
|
Zhou XY, Chen X. Ru-catalyzed oxidation and C–C bond formation of indoles for the synthesis of 2-indolyl indolin-3-ones under mild reaction conditions. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we described a ruthenium catalyzed oxidation and C–C bond formation reaction of 2-alkyl or 2-aryl substituted indoles using tert-butyl hydroperoxide (TBHP) as oxidant. Coupled with cascade transformation, it provided a mild catalytic oxidation system for the synthesis of 2-indolylindolin-3-ones. The reaction could readily occur using RuCl3·3H2O as catalyst, and the target product was obtained with medium to high yield.
Collapse
Affiliation(s)
- Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| |
Collapse
|
8
|
Cheng LT, Luo SQ, Hong BC, Chen CL, Li WS, Lee GH. Oxidative trimerization of indoles via water-assisted visible-light photoredox catalysis and the study of their anti-cancer activities. Org Biomol Chem 2020; 18:6247-6252. [PMID: 32735638 DOI: 10.1039/d0ob01298j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporation of water has been revealed to successfully facilitate visible-light photoredox catalysis of indole leading to increased production of C2-quaternary indolinone. The water-promoted photoreaction of indole under catalyst-free conditions by a household compact fluorescence light was also demonstrated. The antiproliferative activity of the synthesized indolinones was evaluated against three human cancer cell lines.
Collapse
Affiliation(s)
- Li-Ting Cheng
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Sheng-Qi Luo
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Chia-Ling Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Wen-Shan Li
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
9
|
Thakur A, Singh A, Kaur N, Ojha R, Nepali K. Steering the antitumor drug discovery campaign towards structurally diverse indolines. Bioorg Chem 2020; 94:103436. [DOI: 10.1016/j.bioorg.2019.103436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
|
10
|
Shukla G, Dahiya A, Alam T, Patel BK. Visible Light‐Mediated C2‐Quaternarization of N‐Alkyl Indoles through Oxidative Dearomatization using Ir(III) Catalyst. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gaurav Shukla
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 Assam India
| | - Anjali Dahiya
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 Assam India
| | - Tipu Alam
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 Assam India
| | - Bhisma K. Patel
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 Assam India
| |
Collapse
|
11
|
Saini P, Kumari P, Hazra S, Elias AJ. Oxidative Coupling of Benzylamines with Indoles in Aqueous Medium to Realize Bis‐(Indolyl)Methanes Using a Water‐Soluble Cobalt Catalyst and Air as the Oxidant. Chem Asian J 2019; 14:4154-4159. [DOI: 10.1002/asia.201901313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/13/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Parul Saini
- Department of ChemistryIndian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Pratishtha Kumari
- Department of ChemistryIndian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Susanta Hazra
- Department of ChemistryIndian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Anil J. Elias
- Department of ChemistryIndian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
12
|
Kang H, Jemison AL, Nigro E, Kozlowski MC. Oxidative Coupling of 3-Oxindoles with Indoles and Arenes. CHEMSUSCHEM 2019; 12:3144-3151. [PMID: 30945447 PMCID: PMC6703824 DOI: 10.1002/cssc.201900438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/03/2019] [Indexed: 06/09/2023]
Abstract
A highly efficient method for the oxidative coupling of 2-substituted 3-oxindoles with aromatic compounds to form 2,2-disubstituted indolin-3-ones with broad scope is described. This work utilized oxygen as the terminal oxidant and a base-metal catalyst under mild conditions instead of toxic/precious-metal reagents and higher-molecular-weight oxidants. Quaternary structures were produced in modest-to-excellent yields (up to 96 %) without prefunctionalization.
Collapse
|
13
|
Jiang X, Zhu B, Lin K, Wang G, Su WK, Yu C. Metal-free synthesis of 2,2-disubstituted indolin-3-ones. Org Biomol Chem 2019; 17:2199-2203. [DOI: 10.1039/c8ob03057j] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A straightforward method for the synthesis of indolin-3-ones bearing a C2-quaternary functionality is reported. This cross-coupling reaction allows the facile synthesis of a series of 2,2-disubstituted indolin-3-ones in the absence of a metal catalyst in up to 94% yields.
Collapse
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Bingbin Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Kai Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Guan Wang
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Wei-Ke Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- P.R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
| |
Collapse
|
14
|
Xu Y, Chang F, Cao W, Liu X, Feng X. Catalytic Asymmetric Chemodivergent C2 Alkylation and [3 + 2]-Cycloaddition of 3-Methylindoles with Aziridines. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02880] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yali Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fenzhen Chang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|