1
|
Meersseman Arango H, Bachus N, Nguyen XDL, Bredun B, Luis P, Leyssens T, Roura Padrosa D, Paradisi F, Debecker DP. Crystallization-Assisted Asymmetric Synthesis of Enantiopure Amines Using Membrane-Immobilized Transaminase. CHEM & BIO ENGINEERING 2025; 2:272-282. [PMID: 40302874 PMCID: PMC12035565 DOI: 10.1021/cbe.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 05/02/2025]
Abstract
The production of active pharmaceutical ingredients (APIs) requires enantiopure chiral amines, for which greener synthesis processes are needed. Transaminases (TAs) are enzymes that catalyze the enantioselective production of chiral amines from prochiral ketones through transamination under mild conditions. Yet, industrial applications of biocatalytic transamination remain currently hindered by the limited stability of soluble enzymes and by the unfavorable thermodynamic equilibrium of targeted asymmetric reactions. Enzyme immobilization can be applied to address stability, recoverability, and reusability issues. In the perspective of process intensification, we chose to immobilize TAs on polymeric (polypropylene) membranes. In the asymmetric synthesis of (R)-2-fluoro-α-methylbenzylamine ((R)-FMBA), such membrane-immobilized TAs exhibited superior specific activity and stability compared with soluble TAs; they also outperformed TAs immobilized on resins. The reaction yield remained, however, limited by thermodynamics. To further enhance the synthesis yield, the reaction was coupled with the in situ crystallization of (R)-FMBA with 3,3-diphenylpropionic acid (DPPA). By doing so, the theoretical equilibrium conversion was pushed from ∼44% to ∼83%. In fact, a 72% overall recovery yield of crystallized (R)-FMBA was demonstrated. The enantioselectivity of the reaction mixture was preserved. Importantly, purification was greatly facilitated since the target enantiopure amine was readily recovered as high-purity (R)-FMBA:DPPA crystals. The biocatalytic membranes were found to be fully reusable, performing successive high-yield asymmetric syntheses with only minor deactivation. Overall, the crystallization-assisted strategy proposed herein offers a greener path for the biocatalytic production of valuable chiral targets.
Collapse
Affiliation(s)
- Hippolyte Meersseman Arango
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - Neal Bachus
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - Xuan Dieu Linh Nguyen
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - Basile Bredun
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - Patricia Luis
- Materials
& Process Engineering (iMMC-IMAP), Université
Catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
| | - Tom Leyssens
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - David Roura Padrosa
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Francesca Paradisi
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Damien P. Debecker
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| |
Collapse
|
2
|
Fotiadou R, Pavlidis IV. Challenges and good practices on transaminase-catalysed synthesis of optically pure amines. Methods Enzymol 2025; 714:297-312. [PMID: 40288843 DOI: 10.1016/bs.mie.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Transaminase-catalysed synthesis of chiral amines has been highlighted as an important strategy to get access to optically pure primary amines with high selectivity. However, their application is still hindered from several factors. The co-factor instability leads to instability of the protein itself, while the thermodynamics typically do not favor the desired amination reaction. Thus, several strategies have been suggested to tackle the thermodynamic issue, while parameters that initially may seem trivial, such as selection of buffer salt, pH and temperature, recently were studied more thoroughly. In this chapter we provide a review on the suggested strategies with specific commentaries on their application, as well as protocol for the synthesis of optically pure amines with the two most commonly used amine donors, namely alanine and isopropylamine.
Collapse
Affiliation(s)
- Renia Fotiadou
- Department of Chemistry, University of Crete, Voutes University Campus, Heraklion, Greece
| | - Ioannis V Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, Heraklion, Greece.
| |
Collapse
|
3
|
Belov F, Gazizova A, Bork H, Gröger H, von Langermann J. Crystallization Assisted Dynamic Kinetic Resolution for the Synthesis of (R)-β-Methylphenethylamine. Chembiochem 2024; 25:e202400203. [PMID: 38602845 DOI: 10.1002/cbic.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
This study explores a combination of the concept of enantioselective enzymatic synthesis of β-chiral amines through transamination with in situ product crystallization (ISPC) to overcome product inhibition. Using 2-phenylpropanal as a readily available and easily racemizing substrate of choice, (R)-β-methylphenethylamine ((R)-2-phenylpropan-1-amine) concentrations of up to 250 mM and enantiomeric excesses of up to 99 % are achieved when using a commercially available transaminase from Ruegeria pomeroyi in a fed-batch based dynamic kinetic resolution reaction on preparative scale. The source of substrate decomposition during the reaction is also investigated and the resulting unwanted byproduct formation is successfully reduced to insignificant levels.
Collapse
Affiliation(s)
- Feodor Belov
- Institute of Chemistry, Biocatalytic Synthesis Group, Otto von Guericke University of Magdeburg, Building 28, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Alina Gazizova
- Institute of Chemistry, Department of Technical Chemistry, University of Rostock, Albert-Einstein-Str. 3A, 18059, Rostock, Germany
| | - Hannah Bork
- Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Harald Gröger
- Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Jan von Langermann
- Institute of Chemistry, Biocatalytic Synthesis Group, Otto von Guericke University of Magdeburg, Building 28, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
4
|
Belov F, Mildner A, Knaus T, Mutti FG, von Langermann J. Crystallization-based downstream processing of ω-transaminase- and amine dehydrogenase-catalyzed reactions. REACT CHEM ENG 2023. [DOI: 10.1039/d2re00496h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
This study highlights the use of selective crystallization as a downstream-processing concept for amine products from biocatalytic reactions.
Collapse
|
5
|
Cai B, Wang J, Hu H, Liu S, Zhang C, Zhu Y, Bocola M, Sun L, Ji Y, Zhou A, He K, Peng Q, Luo X, Hong R, Wang J, Shang C, Wang Z, Yang Z, Bong YK, Daussmann T, Chen H. Transaminase Engineering and Process Development for a Whole-Cell Neat Organic Process to Produce ( R)-α-Phenylethylamine. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Baoqin Cai
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Jiyong Wang
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Hu Hu
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Sitong Liu
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Chengxiao Zhang
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Ying Zhu
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Marco Bocola
- Enzymaster Deutschland GmbH, Neusser Str. 39, Düsseldorf 40219, Germany
| | - Lei Sun
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Yaoyao Ji
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Ameng Zhou
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Kuifang He
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Qinli Peng
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Xiao Luo
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Ruimei Hong
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Juanjuan Wang
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Chuanyang Shang
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Zikun Wang
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Zhuhong Yang
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Yong Koy Bong
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Thomas Daussmann
- Enzymaster Deutschland GmbH, Neusser Str. 39, Düsseldorf 40219, Germany
| | - Haibin Chen
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| |
Collapse
|
6
|
Yang J, Buekenhoudt A, Dael MV, Luis P, Satyawali Y, Malina R, Lizin S. A Techno-economic Assessment of a Biocatalytic Chiral Amine Production Process Integrated with In Situ Membrane Extraction. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie Yang
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
- Separation and Conversion Technology, VITO, Boeretang 200, 2400 Mol, Belgium
| | - Anita Buekenhoudt
- Separation and Conversion Technology, VITO, Boeretang 200, 2400 Mol, Belgium
| | - Miet Van Dael
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
- Separation and Conversion Technology, VITO, Boeretang 200, 2400 Mol, Belgium
| | - Patricia Luis
- Materials & Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research & Innovation Centre for Process Engineering (ReCIPE), Place Sainte Barbe, 2 bte L5.02.02, 1348 Louvain-la-Neuve, Belgium
| | - Yamini Satyawali
- Separation and Conversion Technology, VITO, Boeretang 200, 2400 Mol, Belgium
| | - Robert Malina
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
- Laboratory for Aviation and the Environment, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sebastien Lizin
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| |
Collapse
|
7
|
Spöring JD, Graf von Westarp W, Kipp CR, Jupke A, Rother D. Enzymatic Cascade in a Simultaneous, One-Pot Approach with In Situ Product Separation for the Asymmetric Production of (4 S,5 S)-Octanediol. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jan-Dirk Spöring
- Institute for Bio- and Geosciences 1 (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| | | | - Carina Ronja Kipp
- Institute for Bio- and Geosciences 1 (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Andreas Jupke
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Dörte Rother
- Institute for Bio- and Geosciences 1 (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
8
|
Doeker M, Hüttche V, Jupke A. Reactive extraction for the recovery of primary amines from aqueous streams. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
van Schie MMCH, Spöring JD, Bocola M, Domínguez de María P, Rother D. Applied biocatalysis beyond just buffers - from aqueous to unconventional media. Options and guidelines. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:3191-3206. [PMID: 34093084 PMCID: PMC8111672 DOI: 10.1039/d1gc00561h] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/26/2021] [Indexed: 05/09/2023]
Abstract
In nature, enzymes conventionally operate under aqueous conditions. Because of this, aqueous buffers are often the choice for reaction media when enzymes are applied in chemical synthesis. However, to meet the demands of an industrial application, due to the poor water solubility of many industrially relevant compounds, an aqueous reaction system will often not be able to provide sufficient substrate loadings. A switch to a non-aqueous solvent system can provide a solution, which is already common for lipases, but more challenging for biocatalysts from other enzyme classes. The choices in solvent types and systems, however, can be overwhelming. Furthermore, some engineering of the protein structure of biocatalyst formulation is required. In this review, a guide for those working with biocatalysts, who look for a way to increase their reaction productivity, is presented. Examples reported clearly show that bulk water is not necessarily required for biocatalytic reactions and that clever solvent systems design can support increased product concentrations thereby decreasing waste formation. Additionally, under these conditions, enzymes can also be combined in cascades with other, water-sensitive, chemical catalysts. Finally, we show that the application of non-aqueous solvents in biocatalysis can actually lead to more sustainable processes. At the hand of flowcharts, following simple questions, one can quickly find what solvent systems are viable.
Collapse
Affiliation(s)
- Morten M C H van Schie
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Jan-Dirk Spöring
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH 52425 Jülich Germany
- Aachen Biology and Biotechnology, RWTH Aachen University 52056 Aachen Germany
| | - Marco Bocola
- Enzymaster Deutschland GmbH Neusser Str. 39 40219 Düsseldorf Germany
| | | | - Dörte Rother
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH 52425 Jülich Germany
- Aachen Biology and Biotechnology, RWTH Aachen University 52056 Aachen Germany
| |
Collapse
|
10
|
Fellechner O, Smirnova I. Process design of a continuous biotransformation with in situ product removal by cloud point extraction. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oliver Fellechner
- Institute of Thermal Separation Processes Hamburg University of Technology Hamburg Germany
| | - Irina Smirnova
- Institute of Thermal Separation Processes Hamburg University of Technology Hamburg Germany
| |
Collapse
|
11
|
Neuburger J, Süss P, Menyes U, von Langermann J. Use of a suspension‐t‐o‐suspension reaction in a continuously operated transaminase reaction system. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202055190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- J. Neuburger
- University of Rostock Institute of Chemistry Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - P. Süss
- Enzymicals AG Walther-Rathenau-Str. 49a 17489 Greifswald Germany
| | - U. Menyes
- Enzymicals AG Walther-Rathenau-Str. 49a 17489 Greifswald Germany
| | - J. von Langermann
- University of Rostock Institute of Chemistry Albert-Einstein-Str. 3a 18059 Rostock Germany
| |
Collapse
|
12
|
Concept Study for an Integrated Reactor-Crystallizer Process for the Continuous Biocatalytic Synthesis of (S)-1-(3-Methoxyphenyl)ethylamine. CRYSTALS 2020. [DOI: 10.3390/cryst10050345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An integrated biocatalysis-crystallization concept was developed for the continuous amine transaminase-catalyzed synthesis of (S)-1-(3-methoxyphenyl)ethylamine, which is a valuable intermediate for the synthesis of rivastigmine, a highly potent drug for the treatment of early stage Alzheimer’s disease. The three-part vessel system developed for this purpose consists of a membrane reactor for the continuous synthesis of the product amine, a saturator vessel for the continuous supply of the amine donor isopropylammonium and the precipitating reagent 3,3-diphenylpropionate and a crystallizer in which the product amine can continuously precipitate as (S)-1-(3-methoxyphenyl)ethylammonium-3,3-diphenylpropionate.
Collapse
|
13
|
Sviatenko O, Ríos‐Lombardía N, Morís F, González‐Sabín J, Venkata Manideep K, Merdivan S, Günther S, Süss P, Höhne M. One‐pot Synthesis of 4‐Aminocyclohexanol Isomers by Combining a Keto Reductase and an Amine Transaminase. ChemCatChem 2019. [DOI: 10.1002/cctc.201900733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Olha Sviatenko
- Institute of BiochemistryUniversity of Greifswald Felix-Hausdorff-Str. 4 Greifswald 17489 Germany
| | | | - Francisco Morís
- EntreChem SL Vivero Ciencias de la SaludSanto Domingo de Guzmán s/n Oviedo 33011 España
| | - Javier González‐Sabín
- EntreChem SL Vivero Ciencias de la SaludSanto Domingo de Guzmán s/n Oviedo 33011 España
| | | | - Simon Merdivan
- Institute of PharmacyUniversity of Greifswald Friedrich-Ludwig-Jahn-Str. 17 Greifswald 17489 Germany
| | - Sebastian Günther
- Institute of PharmacyUniversity of Greifswald Friedrich-Ludwig-Jahn-Str. 17 Greifswald 17489 Germany
| | - Philipp Süss
- Enzymicals AG Walther-Rathenau-Str. 49a Greifswald 17489 Germany
| | - Matthias Höhne
- Institute of BiochemistryUniversity of Greifswald Felix-Hausdorff-Str. 4 Greifswald 17489 Germany
| |
Collapse
|
14
|
Chen FF, Cosgrove SC, Birmingham WR, Mangas-Sanchez J, Citoler J, Thompson MP, Zheng GW, Xu JH, Turner NJ. Enantioselective Synthesis of Chiral Vicinal Amino Alcohols Using Amine Dehydrogenases. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03889] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Sebastian C. Cosgrove
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - William R. Birmingham
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Juan Mangas-Sanchez
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Joan Citoler
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Matthew P. Thompson
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Nicholas J. Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
15
|
Fellechner O, Blatkiewicz M, Smirnova I. Reactive Separations for In Situ Product Removal of Enzymatic Reactions: A Review. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201900027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Oliver Fellechner
- Hamburg University of Technology Institute of Thermal Separation Processes Eißendorfer Straße 38 21073 Hamburg Germany
| | - Michał Blatkiewicz
- Hamburg University of Technology Institute of Thermal Separation Processes Eißendorfer Straße 38 21073 Hamburg Germany
| | - Irina Smirnova
- Hamburg University of Technology Institute of Thermal Separation Processes Eißendorfer Straße 38 21073 Hamburg Germany
| |
Collapse
|
16
|
Hülsewede D, Dohm J, von Langermann J. Donor Amine Salt‐Based Continuous
in
situ‐
Product Crystallization in Amine Transaminase‐Catalyzed Reactions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dennis Hülsewede
- University of RostockInstitute of Chemistry, Biocatalytic Synthesis Group Albert-Einstein-Str. 3 A 18059 Rostock Germany
| | - Jan‐Niklas Dohm
- University of RostockInstitute of Chemistry, Biocatalytic Synthesis Group Albert-Einstein-Str. 3 A 18059 Rostock Germany
| | - Jan von Langermann
- University of RostockInstitute of Chemistry, Biocatalytic Synthesis Group Albert-Einstein-Str. 3 A 18059 Rostock Germany
| |
Collapse
|
17
|
Narancic T, Almahboub SA, O’Connor KE. Unnatural amino acids: production and biotechnological potential. World J Microbiol Biotechnol 2019; 35:67. [DOI: 10.1007/s11274-019-2642-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
|
18
|
Kelefiotis-Stratidakis P, Tyrikos-Ergas T, Pavlidis IV. The challenge of using isopropylamine as an amine donor in transaminase catalysed reactions. Org Biomol Chem 2019; 17:1634-1642. [PMID: 30394478 DOI: 10.1039/c8ob02342e] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amine transaminases (ATAs) propose an appealing alternative to transition metal catalysts as they can provide chiral amines of high purity from pro-chiral compounds by asymmetric synthesis. Industrial interest on ATAs arises from the fact that chiral amines are present in a wide spectrum of pharmaceutical and other high value-added chiral compounds and building blocks. Despite their potential as useful synthetic tools, several drawbacks such as challenges associated with the thermodynamic equilibrium can still impede their utilization. Several methods have been developed to displace the equilibrium, such as the use of alanine as an amine donor and the subsequent removal of pyruvate with a two-enzyme system, or the use of o-xylylene diamine. To date, the preferred amine donor remains isopropylamine (IPA), as the produced acetone can be removed easily under low pressure or slight heating, without complicating the process with other enzymes. Despite its small size, IPA is not widely accepted from wild-type ATAs, and this fact compromises its wide applicability. Herein, we index the reported biocatalytic aminations with IPA, comparing the sequences, while we discuss significant parameters of the process, such as the effect of temperature and pH, as well as the protein engineering and process development advances in the field. This information is expected to provide an insight for potential designs of tailor-made ATAs and IPA processes.
Collapse
|
19
|
Hülsewede D, Meyer L, von Langermann J. Application of In Situ Product Crystallization and Related Techniques in Biocatalytic Processes. Chemistry 2019; 25:4871-4884. [DOI: 10.1002/chem.201804970] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/04/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Dennis Hülsewede
- Biocatalytic Synthesis Group, Institute of ChemistryUniversity of Rostock A-Einstein-Str. 3A 18059 Rostock Germany
| | - Lars‐Erik Meyer
- Biocatalytic Synthesis Group, Institute of ChemistryUniversity of Rostock A-Einstein-Str. 3A 18059 Rostock Germany
| | - Jan von Langermann
- Biocatalytic Synthesis Group, Institute of ChemistryUniversity of Rostock A-Einstein-Str. 3A 18059 Rostock Germany
| |
Collapse
|
20
|
Meissner MP, Süss P, Brundiek H, Woodley JM, von Langermann J. Scoping the Enantioselective Desymmetrization of a Poorly Water-Soluble Diester by Recombinant Pig Liver Esterase. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Murray P. Meissner
- Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads, Building 229, 2800 Lyngby, Denmark
- Oxford Biotrans
Ltd., 127 Olympic Avenue, Milton Park OX14 4SA, United Kingdom
| | - Philipp Süss
- Enzymicals AG, Walther-Rathenau-Straße 49a, 17489 Greifswald, Germany
| | - Henrike Brundiek
- Enzymicals AG, Walther-Rathenau-Straße 49a, 17489 Greifswald, Germany
| | - John M. Woodley
- Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads, Building 229, 2800 Lyngby, Denmark
| | - Jan von Langermann
- University of Rostock, Institute of Chemistry, Biocatalytic Synthesis Group, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
| |
Collapse
|
21
|
Hülsewede D, Süss P, Menyes U, von Langermann J. In-situ-Produktkristallisation zur Gleichgewichtsverschiebung bei ausgewählten Amintransaminase-katalysierten Reaktionen. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201855280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- D. Hülsewede
- Universität Rostock; Institut für Chemie, Biokatalyse-Gruppe; Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - P. Süss
- Enzymicals AG; Walther-Rathenau-Straße 49a 17489 Greifswald Deutschland
| | - U. Menyes
- Enzymicals AG; Walther-Rathenau-Straße 49a 17489 Greifswald Deutschland
| | - J. von Langermann
- Universität Rostock; Institut für Chemie, Biokatalyse-Gruppe; Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| |
Collapse
|