1
|
Jin CA, Liu H, Xie BW, Liang RX, Jia YX. Visible-light-induced dearomative 1,4-carbamoylpyridinylation of nonactivated naphthalenes. Org Biomol Chem 2025. [PMID: 40391439 DOI: 10.1039/d5ob00550g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
A visible-light-induced dearomative 1,4-carbamoylpyridinylation of nonactivated naphthalenes is described. The protocol provides rapid access to a series of pyridinylated spiro 1,2-dihydronaphthalenes in moderate yields by using naphthyl-substituted oxamic acids and 4-cyanopyridines as substrates through radical-radical cross-coupling followed by base-mediated alkene tautomerization. In addition, this method enabled late-stage functionalization of several drug derivatives, demonstrating the practical utility of this reaction.
Collapse
Affiliation(s)
- Cheng-An Jin
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Hao Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Bo-Wen Xie
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Yi-Xia Jia
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
2
|
Song TT, Lin F, Xu ST, Zhou BC, Zhang LM, Guo SY, Zhang X, Chen QA. Divergent Construction of Cyclobutane-Fused Pentacyclic Scaffolds via Double Dearomative Photocycloaddition. Angew Chem Int Ed Engl 2025:e202505906. [PMID: 40356073 DOI: 10.1002/anie.202505906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/01/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
Cyclobutane-fused polycyclic scaffolds are structurally interesting cores in natural product synthesis and drug discovery. The construction of these skeletons often requires elaborate synthetic effort and gives low efficiency. We herein demonstrated the divergent construction of various cyclobutane-fused 2D/3D pentacyclic scaffolds by a photocatalytic intermolecular double dearomative cycloaddition of arenes. These skeletons, typically unattainable under thermal conditions, could be accessed with exclusive diastereoselectivity under mild photochemical conditions. Combined experimental and computational mechanistic studies elucidate that the reaction proceeds through a cascade sequence involving photocatalytic 1,4-hydroalkylation, alkene isomerization, and [2 + 2] cycloaddition via an intertwined single electron transfer (SET)/energy transfer (EnT) nature. This protocol provided a divergent synthetic approach for constructing (pseudo)-dimeric cyclobutane-fused 2D/3D pentacyclic scaffolds. The visible light induced intermolecular double dearomative cycloaddition between naphthalenes and benzothiophenes was also realized, providing indispensable methods for unprecedented structurally diverse polycyclic molecules that were difficult to access by conventional transformations.
Collapse
Affiliation(s)
- Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Fan Lin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Shan-Tong Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Bo-Chao Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Ming Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Yu Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xinglong Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Hu C, Cai CY, Barta ES, Merchant RR, Matsuura BS, Chen SJ, Chen S, Qin T. Ligand-Controlled Regioselective Dearomative Vicinal and Conjugate Hydroboration of Quinolines. J Am Chem Soc 2025; 147:11906-11914. [PMID: 40146905 PMCID: PMC12022962 DOI: 10.1021/jacs.4c17247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
A dearomative strategy to regioselectively modify arenes using a "diene" synthon within aromatic rings provides access to highly functionalized heterocycles from abundant aromatic feedstocks and represents an alternative synthetic approach besides traditional cross-coupling and C-H functionalization methodologies. In this study, we present an efficient method for selectively introducing boron onto quinolines through dearomative hydroboration using easily accessible and stable phosphine-ligated borane complexes. The vicinal 5,6- and conjugate 5,8-hydroborated products could be obtained regioselectively by modifying the phosphine ligand. Drawing inspiration from diverse organoboron transformations, these borane building blocks were diversified by a range of downstream functionalizations, providing modular pathways for the skeletal modifications of quinolines to access a variety of challenging functionalized heterocycles.
Collapse
Affiliation(s)
- Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Chen-Yan Cai
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Elizabeth S Barta
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Bryan S Matsuura
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
4
|
Gilbert A, Zuber J, Bach T. Intramolecular ortho Photocycloaddition of 4-Substituted 7-(4'-Alkenyloxy)-1-indanones and Ensuing Reaction Cascades. J Org Chem 2025; 90:4099-4107. [PMID: 40066942 PMCID: PMC11934143 DOI: 10.1021/acs.joc.5c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
4-Substituted 7-(4'-alkenyloxy)-1-indanones were prepared from the respective substituted aryl propanoic acids and subjected to UV-A irradiation (λ = 350 or 366 nm). While the 4-chloro compound was directly converted at λ = 366 nm into a pentacyclic product (47% yield) by a three-photon cascade process, the oxygenated substrates reacted in trifluoroethanol at λ = 350 nm by a two-photon cascade, involving an ortho photocycloaddition, a thermal disrotatory ring opening, and a [4π] photocyclization (six examples, 67-82% yield). An ensuing photochemical di-π-methane rearrangement of the latter products was achieved by irradiation at λ = 350 nm in toluene (five examples, 36-70% yield). The diastereoselectivity of the reaction was probed employing a chiral 1-indanone with a stereogenic center at carbon atom C3. 1-Indanones with a 4-hexenyloxy side chain [(E)- or (Z)-configured] at carbon atom C7 served to interrogate the stereospecifity of the reaction.
Collapse
Affiliation(s)
- Audrey Gilbert
- Department Chemie and Catalysis Research
Center (CRC), Technische Universität
München, Lichtenbergstr.
4, 85747 Garching, Germany
| | - Julian Zuber
- Department Chemie and Catalysis Research
Center (CRC), Technische Universität
München, Lichtenbergstr.
4, 85747 Garching, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research
Center (CRC), Technische Universität
München, Lichtenbergstr.
4, 85747 Garching, Germany
| |
Collapse
|
5
|
Caudle JD, Ennis MK, Dodge DC, Iskandar AA, Portillo Urquiza Y, Seo DK, Wright FM, Purser GH, Leonori D, Lamar AA. Atom-efficient chlorinative dearomatization of naphthol, quinolinol, and isoquinolinol derivatives using trichloroisocyanuric acid (TCCA). Org Biomol Chem 2025; 23:1633-1643. [PMID: 39761115 DOI: 10.1039/d4ob01894j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
A variety of dearomatized compounds have been prepared in moderate to excellent yields from planar scaffolds using trichloroisocyanuric acid (TCCA) as an atom-economical chlorinating agent. The method tolerates a broad range of functionalities and can take place in several green and/or sustainable solvents. Twenty-one examples of 1,1-dichlorinated products of dearomatized 2-naphthols and analogous heteroarenes (quinolinols, isoquinolinols, and quinazolinol) are reported along with five examples of monochlorinated dearomatized products. The utility of the 1,1-dichloronaphthalenone product as a reactive intermediate species is demonstrated in a two-step, one-pot reaction carried out in a green solvent. In a mechanistic investigation, the coordination of the chlorinating agent to the hydroxy substituent of the planar scaffold prior to chlorine transfer is implicated.
Collapse
Affiliation(s)
- Jenna D Caudle
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Marlow K Ennis
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Dillon C Dodge
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Audrey A Iskandar
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Yesenia Portillo Urquiza
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - David K Seo
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Franklyn M Wright
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Gordon H Purser
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Angus A Lamar
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| |
Collapse
|
6
|
Zeng G, Guo D, Jiang H, Yin B. Chemodivergent dearomatization of benzene-linked O-oxime esters via EnT-induced radical cross-coupling. Chem Sci 2025; 16:2690-2699. [PMID: 39802692 PMCID: PMC11717118 DOI: 10.1039/d4sc07681h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
Radical-mediated dearomatization strategies offer a blueprint for building value-added and synthetically valuable three-dimensional skeletons from readily available aromatic starting materials. Herein, we report a novel strategy by leveraging benzene-linked O-oxime esters as triply functionalized precursors to form two distinct persistent radicals under a chemodivergent pathway. These radicals then couple with a cyclohexadienyl radical for either carboamination or carbo-aminoalkylation. Remarkably, a series of 4-(2-aminoethyl)anilines derivatives featuring all-carbon quaternary centers, along with the formation of four different types of chemical bonds, are efficiently constructed through a unique rearomatization cascade in the carboamination. Importantly, employing DMPU as the hydrogen atom transfer (HAT) donor strategically diverts the reaction pathway from the C-N bond formation towards the C-C bond formation. Our mechanistic explorations support a sequential HAT/energy transfer (EnT)/HAT cascade as the key stage for carbo-aminoalkylation involving the N-center iminyl radical. Significantly, this work demonstrates the elegant expansion of divergent C-N and C-C bond formation using the imine moiety within O-oxime esters as the bifunctional reagent, and it broadens the chemical space of both benzenes and O-oxime esters in radical-mediated transformations.
Collapse
Affiliation(s)
- Guohui Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT) Guangzhou 510640 China
| | - Dongwen Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT) Guangzhou 510640 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT) Guangzhou 510640 China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT) Guangzhou 510640 China
| |
Collapse
|
7
|
Adak S, Hazra PS, Fox CB, Brown MK. Boron Enabled Directed [2+2]- and Dearomative [4+2]-Cycloadditions Initiated by Energy Transfer. Angew Chem Int Ed Engl 2025; 64:e202416215. [PMID: 39508634 PMCID: PMC11753935 DOI: 10.1002/anie.202416215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Indexed: 11/15/2024]
Abstract
A strategy for the photosensitized [2+2]-cycloaddition between styrenyl dihaloboranes and unactivated allylamines to access cyclobutylboronates with control of stereochemistry and regiochemistry is presented. The success of the reaction relies on the temporary coordination between in situ generated dihaloboranes and amines under mild reaction conditions. In addition, cyclobutanes with varying substitution patterns have been prepared using N-heterocycles as directing group. Manipulation of the C-B bond allows for the synthesis of a diverse class of cyclobutanes from simple precursors. Moreover, these reactions lead to the synthesis of complex amines and heteroaromatic compounds, which have significant utility in medicinal chemistry. Finally, a dearomative [4+2]-cycloaddition of naphthalenes using a boron-enabled temporary tethering strategy has also been uncovered to synthesize complex 3-dimensional borylated building blocks.
Collapse
Affiliation(s)
- Souvik Adak
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN 47401, US
| | - Partha Sarathi Hazra
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN 47401, US
| | - Carter B. Fox
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN 47401, US
| | - M. Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN 47401, US
| |
Collapse
|
8
|
Beduru S, Huple DB, Kutateladze AG. Complexity-Building Exhaustive Dearomatization of Benzenoid Aromatics within an ESIPT-Initiated Three-Step Photochemical Cascade. Angew Chem Int Ed Engl 2025; 64:e202415176. [PMID: 39265085 DOI: 10.1002/anie.202415176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Dearomative cycloadditions offer rapid access to complex 3D molecular architectures, commonly via a sp2-to-sp3 rehybridization of two atoms of an aromatic ring. Here we report that the 6e π-system of a benzenoid aromatic pendant could be exhaustively depleted within a single photochemical cascade. An implementation of this approach involves the initial dearomative [4+2] cycloaddition of the Excited State Intramolecular Proton Transfer (ESIPT)-generated azaxylylene, followed by two consecutive [2+2] cycloadditions of auxiliary π moieties strategically positioned in the photoprecursor. Such photochemical cascade fully dearomatizes the benzenoid aromatic ring, saturating all six sp2 atoms to yield a complex sp3-rich scaffold with high control of its 3D molecular shape, rendering it a robust platform for rapid systematic mapping of underexplored chemical space. Significant growth of molecular complexity-starting with a modular synthesis of photoprecursors from readily available building blocks-is quantified by Böttcher score calculations.
Collapse
Affiliation(s)
- Srinivas Beduru
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| | - Deepak B Huple
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| |
Collapse
|
9
|
Zhang SR, Yue JP, Wang LF, Gui YY, Zhang W, Yu DG, Ye JH. Dearomative hydroamination of heteroarenes catalyzed by the phenolate photocatalyst. Chem Commun (Camb) 2024; 60:13083-13086. [PMID: 39440373 DOI: 10.1039/d4cc03879g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Dearomative functionalization of heteroarenes offers an attractive and sustainable approach for the rapid construction of complex 3D heterocyclic scaffolds from planar structures. Despite progress in this field, dearomative amination of heteroarenes via a radical anion intermediate remains a challenge. Here, we report a photoredox-catalyzed dearomative hydroamination of heteroarenes with hydrazodiformates under mild and transition-metal-free reaction conditions. Various benzofurans and benzothiophenes can efficiently participate in this transformation. A series of mechanistic experiments revealed that heteroaryl radical anions are the crucial intermediates, generated through photo-induced electron transfer between the excited phenolate photocatalyst and heteroarenes.
Collapse
Affiliation(s)
- Shu-Rong Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Long-Fu Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
10
|
Liu T, Luo Y, Liu Y. Construction of fused heterocycles by visible-light induced dearomatization of nonactivated arenes. Org Biomol Chem 2024. [PMID: 39469871 DOI: 10.1039/d4ob01530d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
A diverse array of fused [6-6-5] tricyclic heterocycles has been synthesized via the dimerization and dearomative cyclization of benzene derivatives under visible light irradiation. The initiation of the cascade process is likely from aryloxy radicals, engendered through proton-coupled electron transfer by the photoexcited vinylidene ortho-quinone methide (VQM) and a Brønsted base.
Collapse
Affiliation(s)
- Tianyu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yong Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
11
|
Shimose A, Ishigaki S, Sato Y, Nogami J, Toriumi N, Uchiyama M, Tanaka K, Nagashima Y. Dearomative Construction of 2D/3D Frameworks from Quinolines via Nucleophilic Addition/Borate-Mediated Photocycloaddition. Angew Chem Int Ed Engl 2024; 63:e202403461. [PMID: 38803130 DOI: 10.1002/anie.202403461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Dearomative construction of multiply-fused 2D/3D frameworks, composed of aromatic two-dimensional (2D) rings and saturated three-dimensional (3D) rings, from readily available quinolines has greatly contributed to drug discovery. However, dearomative cycloadditions of quinolines in the presence of photocatalysts usually afford 5,6,7,8-tetrahydroquinoline (THQ)-based polycycles, and dearomative access to 1,2,3,4-THQ-based structures remains limited. Herein, we present a chemo-, regio-, diastereo-, and enantioselective dearomative transformation of quinolines into 1,2,3,4-THQ-based 6-6-4-membered rings without any catalyst, through a combination of nucleophilic addition and borate-mediated [2+2] photocycloaddition. Detailed mechanistic studies revealed that the photoexcited borate complex, generated from quinoline, organolithium, and HB(pin), accelerates the cycloaddition and suppresses the rearomatization that usually occurs in conventional photocycloaddition. Based on our mechanistic analysis, we also developed further photoinduced cycloadditions affording other types of 2D/3D frameworks from isoquinoline and phenanthrene.
Collapse
Affiliation(s)
- Asuha Shimose
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shiho Ishigaki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yu Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Naoyuki Toriumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
12
|
Roy B, Avasare V, Sarkar D. Tribromide enabled step-up generation of spirolactams from esters employing oxidative dearomatization of arenols. Chem Commun (Camb) 2024; 60:9206-9209. [PMID: 39109467 DOI: 10.1039/d4cc02527j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Synthetically challenging spirolactams were developed in good yields and regio-selectivity through a step-up oxidative dearomatization of easily accessible arenols tethered to esters in the presence of quaternary ammonium tribromide as an economic oxidant and amines. The reaction mechanism associated with this unprecedented dearomative lactamisation has been forecasted with a series of controlled experiments and DFT studies.
Collapse
Affiliation(s)
- Barnali Roy
- Department of Chemistry, NIT Rourkela, Odisha 769008, India.
| | - Vidya Avasare
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| | - Debayan Sarkar
- Organic Synthesis and Molecular Engineering Laboratory, Department of Chemistry, IIT Indore, Madhya Pradesh 453552, India.
| |
Collapse
|
13
|
Hou L, Yang L, Yang G, Luo Z, Xiao W, Yang L, Wang F, Gong LZ, Liu X, Cao W, Feng X. Catalytic Asymmetric Dearomative [2 + 2] Photocycloaddition/Ring-Expansion Sequence of Indoles with Diversified Alkenes. J Am Chem Soc 2024; 146:23457-23466. [PMID: 38993029 DOI: 10.1021/jacs.4c06780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Developing novel strategies for catalytic asymmetric dearomatization (CADA) reactions is highly valuable. Visible light-mediated photocatalysis is demonstrated to be a powerful tool to activate aromatic compounds for further synthetic transformations. Herein, a catalytic asymmetric dearomative [2 + 2] photocycloaddition/ring-expansion sequence of indoles with simple alkenes was reported, providing a facile access to enantioenriched cyclopenta[b]indoles with good to high yields and enantioselectivities by means of chiral lanthanide photocatalysis. This protocol exhibited a broad substrate scope and good functional group tolerance, as well as potential applications in the synthesis of bioactive molecules. Mechanistic studies, including control experiments, UV-vis absorption spectroscopy, emission spectroscopy, and DFT calculations, were carried out, shedding insights into the reaction mechanism and the origin of enantioselectivity.
Collapse
Affiliation(s)
- Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Longqing Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Gaofei Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhe Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wanlong Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Linhan Yang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610061, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610061, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Zhang WW, Feng Z, You SL, Zheng C. Electrophile-Arene Affinity: An Energy Scale for Evaluating the Thermodynamics of Electrophilic Dearomatization Reactions. J Org Chem 2024; 89:11487-11501. [PMID: 39077910 DOI: 10.1021/acs.joc.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Rational design and development of organic reactions are lofty goals in synthetic chemistry. Quantitative description of the properties of molecules and reactions by physical organic parameters plays an important role in this regard. In this Article, we report an energy scale, namely, electrophile-arene affinity (EAA), for evaluating the thermodynamics of electrophilic dearomatization reactions, a class of important transformations that can rapidly build up molecular complexity and structural diversity by converting planar aromatic compounds into three-dimensional cyclic molecules. The acquisition of EAA data can be readily achieved by theoretically calculating the enthalpy changes (ΔH) of the hypothetical reactions of various (cationic) electrophiles with aromatic systems (taking the 1-methylnaphthalen-2-olate ion as an example in this study). Linear correlations are found between the calculated ΔH values and established physical organic parameters such as the percentage of buried volume %VBur (steric effect), Hammett's σ or Brown's σ+ (electronic effect), and Mayr's E (reaction kinetics). Careful analysis of the ΔH values leads to the rational design of a dearomative alkynylation reaction using alkynyl hypervalent iodonium reagents as the electrophiles.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Shanghai-Hong Kong Joint Laboratory of Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
15
|
Wang MY, Zeng WL, Chen L, Yuan YF, Li W. Umpolung-Enabled Divergent Dearomative Carbonylations. Angew Chem Int Ed Engl 2024; 63:e202403917. [PMID: 38818640 DOI: 10.1002/anie.202403917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Although dearomative functionalizations enable the direct conversion of flat aromatics into precious three-dimensional architectures, the case for simple arenes remains largely underdeveloped owing to the high aromatic stabilization energy. We herein report a dearomative sequential addition of two nucleophiles to arene π-bonds through umpolung of chromium-arene complexes. This mode enables divergent dearomative carbonylation reactions of benzene derivatives by tolerating various nucleophiles in combination with alcohols or amines under CO-gas-free conditions, thus providing modular access to functionalized esters or amides. The tunable synthesis of 1,3- or 1,4-cyclohexadienes as well as the construction of carbon quaternary centers further highlight the versatility of this dearomatization. Diverse late-stage modifications and derivatizations towards synthetically challenging and bioactive molecules reveal the synthetic utility. A possible mechanism was proposed based on control experiments and intermediate tracking.
Collapse
Affiliation(s)
- Ming-Yang Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Long Zeng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Fei Yuan
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
16
|
Natarajan P, Subramaniam SV, Peruncheralathan S. Organocatalytic Dearomatization of 5-Aminopyrazoles: Synthesis of 4-Hydroxypyrazolines. J Org Chem 2024; 89:10258-10271. [PMID: 38989804 DOI: 10.1021/acs.joc.4c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Dearomatization is a fundamental chemical reaction that affords complex three-dimensional heterocyclic frameworks. We disclose the first organocatalytic dearomatization of 5-aminopyrazoles, which yields a range of structurally diversified C4-hydroxylated pyrazolines with yields of ≤95% in <1.5 h at room temperature. This catalytic process is achieved using in situ-generated hypervalent iodine. The method also yields a spirolactone via an intramolecular dearomatization process. Furthermore, we demonstrate that substrate-directed reduction of the resulting iminopyrazoline leads to 4,5-difunctionalized pyrazoline as a single diastereomer. Mechanistic studies suggest that the reaction proceeds through a dearomatized cationic intermediate.
Collapse
Affiliation(s)
- Pradeep Natarajan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda 752050, Odisha, India
| | - Subhashini V Subramaniam
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda 752050, Odisha, India
| | - Saravanan Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda 752050, Odisha, India
| |
Collapse
|
17
|
Li M, Huang XL, Zhang ZY, Wang Z, Wu Z, Yang H, Shen WJ, Cheng YZ, You SL. Gd(III)-Catalyzed Regio-, Diastereo-, and Enantioselective [4 + 2] Photocycloaddition of Naphthalene Derivatives. J Am Chem Soc 2024; 146:16982-16989. [PMID: 38870424 DOI: 10.1021/jacs.4c05288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Catalytic asymmetric dearomatization (CADA) reactions have evolved into an efficient strategy for accessing chiral polycyclic and spirocyclic scaffolds from readily available planar aromatics. Despite the significant developments, the CADA reaction of naphthalenes remains underdeveloped. Herein, we report a Gd(III)-catalyzed asymmetric dearomatization reaction of naphthalene with a chiral PyBox ligand via visible-light-enabled [4 + 2] cycloaddition. This reaction features application of a chiral Gd/PyBox complex, which regulates the reactivity and selectivity simultaneously, in excited-state catalysis. A wide range of functional groups is compatible with this protocol, giving the highly enantioenriched bridged polycycles in excellent yields (up to 96%) and selectivity (up to >20:1 chemoselectivity, >20:1 dr, >99% ee). The synthetic utility is demonstrated by a 2 mmol scale reaction, removal of directing group, and diversifications of products. Preliminary mechanistic experiments are performed to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Muzi Li
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xu-Lun Huang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zuo-Yu Zhang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zhiping Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zhuo Wu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hui Yang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Jie Shen
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yuan-Zheng Cheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
18
|
Ji P, Duan K, Li M, Wang Z, Meng X, Zhang Y, Wang W. Photochemical dearomative skeletal modifications of heteroaromatics. Chem Soc Rev 2024; 53:6600-6624. [PMID: 38817197 PMCID: PMC11181993 DOI: 10.1039/d4cs00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 06/01/2024]
Abstract
Dearomatization has emerged as a powerful tool for rapid construction of 3D molecular architectures from simple, abundant, and planar (hetero)arenes. The field has evolved beyond simple dearomatization driven by new synthetic technology development. With the renaissance of photocatalysis and expansion of the activation mode, the last few years have witnessed impressive developments in innovative photochemical dearomatization methodologies, enabling skeletal modifications of dearomatized structures. They offer truly efficient and useful tools for facile construction of highly complex structures, which are viable for natural product synthesis and drug discovery. In this review, we aim to provide a mechanistically insightful overview on these innovations based on the degree of skeletal alteration, categorized into dearomative functionalization and skeletal editing, and to highlight their synthetic utilities.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Kuaikuai Duan
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Menglong Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Yueteng Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| |
Collapse
|
19
|
Yan P, Stegbauer S, Wu Q, Kolodzeiski E, Stein CJ, Lu P, Bach T. Enantioselective Intramolecular ortho Photocycloaddition Reactions of 2-Acetonaphthones. Angew Chem Int Ed Engl 2024; 63:e202318126. [PMID: 38275271 DOI: 10.1002/anie.202318126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
2-Acetonaphthones, which bear an alkenyl group tethered to its C1 carbon atom via an oxygen atom, were found to undergo an enantioselective intramolecular ortho photocycloaddition reaction. A chiral oxazaborolidine Lewis acid leads to a bathochromic absorption shift of the substrate and enables an efficient enantioface differentiation. Visible light irradiation (λ=450 nm) triggers the reaction which is tolerant of various groups at almost any position except carbon atom C8 (16 examples, 53-99 % yield, 80-97 % ee). Consecutive reactions were explored including a sensitized rearrangement to tetrahydrobiphenylenes, which occurred with full retention of configuration. Evidence was collected that the catalytic photocycloaddition occurs via triplet intermediates, and the binding mode of the acetonaphthone to the chiral Lewis acid was elucidated by DFT calculations.
Collapse
Affiliation(s)
- Peng Yan
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Simone Stegbauer
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - Qinqin Wu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Elena Kolodzeiski
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - Christopher J Stein
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| |
Collapse
|
20
|
Zhu M, Gao YJ, Huang XL, Li M, Zheng C, You SL. Photo-induced intramolecular dearomative [5 + 4] cycloaddition of arenes for the construction of highly strained medium-sized-rings. Nat Commun 2024; 15:2462. [PMID: 38503749 PMCID: PMC10951311 DOI: 10.1038/s41467-024-46647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Medium-sized-ring compounds have been recognized as challenging synthetic targets in organic chemistry. Especially, the difficulty of synthesis will be augmented if an E-olefin moiety is embedded. Recently, photo-induced dearomative cycloaddition reactions that proceed via energy transfer mechanism have witnessed significant developments and provided powerful methods for the organic transformations that are not easily realized under thermal conditions. Herein, we report an intramolecular dearomative [5 + 4] cycloaddition of naphthalene-derived vinylcyclopropanes under visible-light irradiation and a proper triplet photosensitizer. The reaction affords dearomatized polycyclic molecules possessing a nine-membered-ring with an E-olefin moiety in good yields (up to 86%) and stereoselectivity (up to 8.8/1 E/Z). Detailed computational studies reveal the origin behind the favorable formation of the thermodynamically less stable isomers. Diverse derivations of the dearomatized products have also been demonstrated.
Collapse
Affiliation(s)
- Min Zhu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Yuan-Jun Gao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
| | - Xu-Lun Huang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Muzi Li
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
| | - Chao Zheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China.
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China.
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China.
| |
Collapse
|
21
|
An B, Cui H, Zheng C, Chen JL, Lan F, You SL, Zhang X. Tunable C-H functionalization and dearomatization enabled by an organic photocatalyst. Chem Sci 2024; 15:4114-4120. [PMID: 38487217 PMCID: PMC10935768 DOI: 10.1039/d4sc00120f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
C-H functionalization and dearomatization constitute fundamental transformations of aromatic compounds, which find wide applications in various research areas. However, achieving both transformations from the same substrates with a single catalyst by operating a distinct mechanism remains challenging. Here, we report a photocatalytic strategy to modulate the reaction pathways that can be directed toward either C-H functionalization or dearomatization under redox-neutral or net-reductive conditions, respectively. Two sets of indoles and indolines bearing tertiary alcohols are divergently furnished with good yields and high selectivity. The key to success is the introduction of isoazatruxene ITN-2 as a novel photocatalyst (PC), which outperforms the commonly used PCs. The ready synthesis and high modulability of isoazatruxene type PCs indicate their great application potential.
Collapse
Affiliation(s)
- Bohang An
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Hao Cui
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Ji-Lin Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Feng Lan
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| |
Collapse
|
22
|
Yuan PF, Huang XT, Long L, Huang T, Sun CL, Yu W, Wu LZ, Chen H, Liu Q. Regioselective Dearomative Amidoximation of Nonactivated Arenes Enabled by Photohomolytic Cleavage of N-nitrosamides. Angew Chem Int Ed Engl 2024; 63:e202317968. [PMID: 38179800 DOI: 10.1002/anie.202317968] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Dearomative spirocyclization reactions represent a promising means to convert arenes into three-dimensional architectures; however, controlling the regioselectivity of radical dearomatization with nonactivated arenes to afford the spirocyclizative 1,2-difunctionalization other than its kinetically preferred 1,4-difunctionalization is exceptionally challenging. Here we disclose a novel strategy for dearomative 1,2- or 1,4-amidoximation of (hetero)arenes enabled by direct visible-light-induced homolysis of N-NO bonds of nitrosamides, giving rise to various highly regioselective amidoximated spirocycles that previously have been inaccessible or required elaborate synthetic efforts. The mechanism and origins of the observed regioselectivities were investigated by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Pan-Feng Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xie-Tian Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Linhong Long
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tao Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
23
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
24
|
Dutta S, Erchinger JE, Strieth-Kalthoff F, Kleinmans R, Glorius F. Energy transfer photocatalysis: exciting modes of reactivity. Chem Soc Rev 2024; 53:1068-1089. [PMID: 38168974 DOI: 10.1039/d3cs00190c] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Excited (triplet) states offer a myriad of attractive synthetic pathways, including cycloadditions, selective homolytic bond cleavages and strain-release chemistry, isomerizations, deracemizations, or the fusion with metal catalysis. Recent years have seen enormous advantages in enabling these reactivity modes through visible-light-mediated triplet-triplet energy transfer catalysis (TTEnT). This tutorial review provides an overview of this emerging strategy for synthesizing sought-after organic motifs in a mild, selective, and sustainable manner. Building on the photophysical foundations of energy transfer, this review also discusses catalyst design, as well as the challenges and opportunities of energy transfer catalysis.
Collapse
Affiliation(s)
- Subhabrata Dutta
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Johannes E Erchinger
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Felix Strieth-Kalthoff
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Roman Kleinmans
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Frank Glorius
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
25
|
Dutta S, Lee D, Ozols K, Daniliuc CG, Shintani R, Glorius F. Photoredox-Enabled Dearomative [2π + 2σ] Cycloaddition of Phenols. J Am Chem Soc 2024; 146:2789-2797. [PMID: 38236061 DOI: 10.1021/jacs.3c12894] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Dearomative photocycloaddition of monocyclic arenes is an appealing strategy for comprehending the concept of "escape from flatland". This brings the replacement of readily available planar aromatic hydrocarbon units with a 3D fused bicyclic core with sp3-enriched carbon units. Herein, we outline an intermolecular approach for the dearomative photocycloaddition of phenols. In order to circumvent the ground-state aromaticity and to construct conformationally restrained building blocks, bicyclo[1.1.0]butanes were chosen as coupling partners. This dearomative approach renders straightforward access to a bicyclo[2.1.1]hexane unit fused to a cyclic enone moiety, which further contributed as a synthetic linchpin for postmodifications. Mechanistic experiment advocates for a plausible onset from both the reactants, depending on the redox potential.
Collapse
Affiliation(s)
- Subhabrata Dutta
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Donghyeon Lee
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kristers Ozols
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
26
|
Angelini E, Martinelli M, Roà E, Ungarean CN, Salome C, Lefebvre Q, Bournez C, Fessard TC, Sarlah D. Diversification of Simple Arenes into Complex (Amino)cyclitols. Chemistry 2024; 30:e202303262. [PMID: 37856371 DOI: 10.1002/chem.202303262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
Highly oxygenated cyclohexanes, including (amino)cyclitols, are featured in natural products possessing a notable range of biological activities. As such, these building blocks are valuable tools for medicinal chemistry. While de novo synthetic strategies have provided access to select compounds, challenges including stereochemical density and complexity have hindered the development of a general approach to (amino)cyclitol structures. This work reports the use of arenophile chemistry to access dearomatized intermediates which are amenable to diverse downstream transformations. Practical guidelines were developed for the synthesis of natural and non-natural (amino)cyclitols from simple arenes through a series of strategic functionalization events.
Collapse
Affiliation(s)
- Elisa Angelini
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Matteo Martinelli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Eugenio Roà
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Chad N Ungarean
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | | | | | - Colin Bournez
- SpiroChem AG, Mattenstrasse 22, 4058, Basel, Switzerland
| | | | - David Sarlah
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, 61801, Urbana, Illinois, USA
| |
Collapse
|
27
|
Shu H, Mo JN, Liu WD, Zhao J. Synthesis of Pyrroloindolines via N-Heterocyclic Carbene Catalyzed Dearomative Amidoacylation of Indole Derivatives. Org Lett 2023. [PMID: 37996081 DOI: 10.1021/acs.orglett.3c03588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Pyrroloindoline is a privileged heterocyclic motif that is widely present in many natural products and pharmaceutical compounds. Herein, we report an amidyl radical-mediated dearomatization for synthesizing a series of pyrroloindolines via N-heterocyclic carbene catalysis. In this organocatalytic process, the Breslow enolate served as both a single electron donor and an acyl radical equivalent to assemble C3a-acyl pyrroloindolines with a broad substrate scope. Sequential reduction of the indole derivatives provided the analogues of (±)-desoxyeseroline, which exhibited potential anticancer activity.
Collapse
Affiliation(s)
- Hanyu Shu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jia-Nan Mo
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wen-Deng Liu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
28
|
Liu TX, Wang X, Xia S, Chen M, Li M, Yang P, Ma N, Hu Z, Yang S, Zhang G, Wang GW. Dearomative Ring-Fused Azafulleroids and Carbazole-Derived Metallofullerenes: Reactivity Dictated by Encapsulation in a Fullerene Cage. Angew Chem Int Ed Engl 2023; 62:e202313074. [PMID: 37789646 DOI: 10.1002/anie.202313074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023]
Abstract
Herein, we report divergent additions of 2,2'-diazidobiphenyls to C60 and Sc3 N@Ih -C80 . In stark contrast to that of the previously reported bis-azide additions, the unexpected cascade reaction leads to the dearomative formation of azafulleroids 2 fused with a 7-6-5-membered ring system in the case of C60 . In contrast, the corresponding reaction with Sc3 N@Ih -C80 switches to the C-H insertion pathway, thereby resulting in multiple isomers, including a carbazole-derived [6,6]-azametallofulleroid 3 and a [5,6]-azametallofulleroid 4 and an unusual 1,2,3,6-tetrahydropyrrolo[3,2-c]carbazole-derived metallofullerene 5, whose molecular structures have been unambiguously determined by single-crystal X-ray diffraction analyses. Among them, the addition type of 5 is observed for the first time in all reported additions of azides to fullerenes. Furthermore, unexpected isomerizations from 3 to 5 and from 4 to 5 have been discovered, providing the first examples of the isomerization of an azafulleroid to a carbazole-derived fullerene rather than an aziridinofullerene. In particular, the isomerism of the [5,6]-isomer 4 to the [5,6]-isomer 5 is unprecedented in fullerene chemistry, contradicting the present understanding that isomerization generally occurs between [5,6]- and [6,6]-isomers. Control experiments have been carried out to rationalize the reaction mechanism. Furthermore, representative azafulleroids have been applied in organic solar cells, thereby resulting in improved power conversion efficiencies.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Shilu Xia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Muqing Chen
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong Province, 523808, P. R. China
| | - Mingjie Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Panting Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Ziqi Hu
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
29
|
Wang W, Brown MK. Photosensitized [4+2]- and [2+2]-Cycloaddition Reactions of N-Sulfonylimines. Angew Chem Int Ed Engl 2023; 62:e202305622. [PMID: 37395414 PMCID: PMC10528476 DOI: 10.1002/anie.202305622] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 07/04/2023]
Abstract
The synthesis of polycyclic compounds is of high interest due to the prevalence of these motifs in drugs and natural products. Herein, we report on the stereoselective construction of 3D bicyclic scaffolds and azetidine derivatives by modulation of N-sulfonylimines to achieve either [4+2]- or [2+2]-cycloaddition reactions. The utility of the method was established by further modulation of the product. Mechanistic studies are also included, which support reaction via Dexter energy transfer.
Collapse
Affiliation(s)
- Wang Wang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, USA
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, USA
| |
Collapse
|
30
|
Yoshida Y, Takeuchi H, Nakagawa K, Fujii T, Arichi N, Oishi S, Ohno H, Inuki S. Construction of a Bicyclo[2.2.2]octene Skeleton via a Visible-Light-Mediated Radical Cascade Reaction of Amino Acid Derivatives with N-(2-Phenyl)benzoyl Groups. Org Lett 2023. [PMID: 37366566 DOI: 10.1021/acs.orglett.3c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Bridged polycyclic ring systems constitute the core structures of numerous natural products and biologically active molecules. We found that simple biphenyl substrates derived from amino acids participate in a radical cascade reaction under visible light irradiation in the presence of [Ir{dF(CF3)ppy}2(dtbpy)]PF6 to enable the direct construction of bicyclo[2.2.2]octene structures. Isotopic labeling experiments suggested that intramolecular hydrogen atom transfer is involved in the cascade processes.
Collapse
Affiliation(s)
- Yuki Yoshida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Haruka Takeuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kohei Nakagawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiki Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
31
|
Immel JR, Alghafli BM, Rodríguez Ugalde AA, Bloom S. Aqueous Flavin Photoredox Catalysis Drives Exclusive C3-Alkylation of Indolyl Radical Cations in Route to Unnatural Tryptophan Mimetics. Org Lett 2023; 25:3818-3822. [PMID: 37191639 PMCID: PMC11055211 DOI: 10.1021/acs.orglett.3c01398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
One way to build chemical diversity into indoles is to oxidize them to indolyl radical cations (Ind•+). These intermediates can accept new functional groups across C2-C3 bonds or independently at C2. Less encountered is selective diversification at C3, a position plagued by competing dearomative side reactions. We disclose an aqueous photoredox-catalyzed method for transforming Ind•+ into C3-substituted tryptophan mimetics that uses water as a transient protecting group to guide site-selective C3 alkylation.
Collapse
Affiliation(s)
- Jacob R Immel
- Department of Medicinal Chemistry, The University of Kansas, Gray Little Hall, Lawrence, Kansas 66045, United States
| | - Bayan M Alghafli
- Department of Medicinal Chemistry, The University of Kansas, Gray Little Hall, Lawrence, Kansas 66045, United States
| | - Allen Alonso Rodríguez Ugalde
- Department of Medicinal Chemistry, The University of Kansas, Gray Little Hall, Lawrence, Kansas 66045, United States
| | - Steven Bloom
- Department of Medicinal Chemistry, The University of Kansas, Gray Little Hall, Lawrence, Kansas 66045, United States
| |
Collapse
|
32
|
Bhakat M, Khatua B, Biswas P, Guin J. Brønsted Acid-Promoted Intermolecular Dearomative Photocycloaddition of Bicyclic Azaarenes with Olefins under Aerobic Conditions. Org Lett 2023; 25:3089-3093. [PMID: 37096800 DOI: 10.1021/acs.orglett.3c00917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Herein, we present a simplified reaction protocol for the dearomatization of bicyclic azaarenes via photochemical cycloaddition with alkenes using an Ir(III) photosensitizer, trifluoroacetic acid (TFA), dichloroethane, and a blue light-emitting diode. An efficient protonation of azaarenes with TFA enhances the reactivity of triplet azaarene toward olefins, enabling the photocycloaddition under aerobic conditions. The protocol applies to a broad range of substrates. Control experiments indicate a strong correlation between the degree of protonation of azaarene and the product yield.
Collapse
Affiliation(s)
- Manotosh Bhakat
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Bitasik Khatua
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Promita Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
33
|
Abstract
The first vinylogous dearomatization is reported. Under a photoinduced platform, various benzothiophenes functionalized by ketones at the 3-position could react with 3-methylenechroman-4-ones efficiently, leading to a variety of valuable products that contain the pharmaceutically significant chromones and 2,3-dihydrobenzo[b]thiophenes concurrently. The transformations were revealed to experience hydrogen-atom transfer, dearomatization, olefin migration, and radical cross coupling.
Collapse
Affiliation(s)
- Xinxin Lv
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University; Pingyuan Laboratory, Xinxiang 453007, Henan, P. R. China
| | - Ya-Nan Qi
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University; Pingyuan Laboratory, Xinxiang 453007, Henan, P. R. China
| | - Jiahao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University; Pingyuan Laboratory, Xinxiang 453007, Henan, P. R. China
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Zhiyong Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University; Pingyuan Laboratory, Xinxiang 453007, Henan, P. R. China
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
34
|
Ikeda K, Kojima R, Kawai K, Murakami T, Kikuchi T, Kojima M, Yoshino T, Matsunaga S. Formation of Isolable Dearomatized [4 + 2] Cycloadducts from Benzenes, Naphthalenes, and N-Heterocycles Using 1,2-Dihydro-1,2,4,5-tetrazine-3,6-diones as Arenophiles under Visible Light Irradiation. J Am Chem Soc 2023; 145:9326-9333. [PMID: 37055373 DOI: 10.1021/jacs.3c02556] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
We report that the dearomative [4 + 2] cycloaddition between 1,2-dihydro-1,2,4,5-tetrazine-3,6-diones (TETRADs) and benzenes, naphthalenes, or N-heteroaromatic compounds under visible light irradiation affords the corresponding isolable cycloadducts. Several synthetic transformations including transition-metal-catalyzed allylic substitution reactions using the isolated cycloadducts at room temperature or above were demonstrated. Computational studies revealed that the retro-cycloaddition of the benzene-TETRAD adduct proceeds via an asynchronous concerted mechanism, while that of the benzene-MTAD adduct (MTAD = 4-methyl-1,2,4-triazoline-3,5-dione) proceeds via a synchronous mechanism.
Collapse
Affiliation(s)
- Kazuki Ikeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Riku Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kentaro Kawai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takayasu Murakami
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
35
|
Chiminelli M, Serafino A, Ruggeri D, Marchiò L, Bigi F, Maggi R, Malacria M, Maestri G. Visible-Light Promoted Intramolecular para-Cycloadditions on Simple Aromatics. Angew Chem Int Ed Engl 2023; 62:e202216817. [PMID: 36705630 DOI: 10.1002/anie.202216817] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
Dearomative cycloadditions are a powerful tool to access a large chemical space exploiting simple and ubiquitous building blocks. The energetic burden due to the loss of aromaticity has however greatly limited their synthetic potential. We devised a general intramolecular method that overcomes these limitations thanks to the photosensitization of allenamides. The visible-light-promoted process gives complex [2.2.2]-(hetero)-bicyclooctadienes at room temperature, likely through the stabilization of transient (bi)radicals by naphthalene. The reaction tolerates several valuable functionalities, offering a convenient handle for a myriad of applications, including original isoindoles and metal complexes.
Collapse
Affiliation(s)
- Maurizio Chiminelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Andrea Serafino
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Davide Ruggeri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Luciano Marchiò
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Franca Bigi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy.,IMEM-CNR, Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Raimondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Max Malacria
- IPCM (UMR CNRS 8232), Sorbonne Université, 4 place Jussieu, 75252, Paris Cedex 05, France
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| |
Collapse
|
36
|
Zhang Y, Yang D, Lu D, Gong Y. Photoredox-Enabled Dearomatization of Protected Anilines: Access to Cyclohexadienone Imines with Contiguous Quaternary Centers. Org Lett 2023. [PMID: 36808968 DOI: 10.1021/acs.orglett.3c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
A photoredox-enabled alkylative dearomatization of protected anilines is reported. Under Ir catalysis and light irradiation, an N-carbamoyl-protected aniline and an α-bromocarbonyl compound could be simultaneously activated, and the two resulting radical species then recombine with each other to afford a dearomatized cyclohexadienone imine as the major product. A series of such imines with contiguous quaternary carbon centers were prepared, which can be further converted into cyclohexadienones, cyclohexadienols, and cyclohexyl amines.
Collapse
Affiliation(s)
- Yunpeng Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Daoyi Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Dengfu Lu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China.,Research Institute of Huazhong University of Science and Technology in Shenzhen, 9 Yuexing 3rd Road, Shenzhen, Guangdong 518063, China
| | - Yuefa Gong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
37
|
Azpilcueta-Nicolas CR, Meng D, Edelmann S, Lumb JP. Dearomatization of Biaryls through Polarity Mismatched Radical Spirocyclization. Angew Chem Int Ed Engl 2023; 62:e202215422. [PMID: 36454656 DOI: 10.1002/anie.202215422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Dearomatization reactions involving radical cyclizations can facilitate the synthesis of complex polycyclic systems that find applications in medicinal chemistry and natural product synthesis. Here we employ redox-neutral photocatalysis to affect a radical spirocyclization that transforms biaryls into spirocyclic cyclohexadienones under mild reaction conditions. In a departure from previously reported methods, our work demonstrates the polarity mismatched addition of a nucleophilic radical to an electron rich arene, and allows the regioselective synthesis of 2,4- or 2,5-cyclohexadienones with broad functional group tolerance. By transforming biaryls into spirocycles, our methodology accesses underexplored three-dimensional chemical space, and provides an efficient means of creating quaternary spirocenters that we apply to the first synthesis of the cytotoxic plant metabolite denobilone A.
Collapse
Affiliation(s)
| | - Derek Meng
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Simon Edelmann
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
38
|
Hu C, Vo C, Merchant RR, Chen SJ, Hughes JME, Peters BK, Qin T. Uncanonical Semireduction of Quinolines and Isoquinolines via Regioselective HAT-Promoted Hydrosilylation. J Am Chem Soc 2023; 145:25-31. [PMID: 36548026 PMCID: PMC9930105 DOI: 10.1021/jacs.2c11664] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterocycles are the backbone of modern medical chemistry and drug development. The derivatization of "an olefin" inside aromatic rings represents an ideal approach to access functionalized saturated heterocycles from abundant aromatic building blocks. Here, we report an operationally simple, efficient, and practical method to selectively access hydrosilylated and reduced N-heterocycles from bicyclic aromatics via a key diradical intermediate. This approach is expected to facilitate complex heterocycle functionalizations that enable access to novel medicinally relevant scaffolds.
Collapse
Affiliation(s)
- Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Cuong Vo
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Rohan R. Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Jonathan M. E. Hughes
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Byron K. Peters
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
39
|
Chen S, Pillitteri S, Fron E, Van Meervelt L, Van der Eycken EV, Sharma UK. Visible-Light-Induced Cascade Difunctionalization of Indoles Enabled by the Synergy of Photoredox and Photoexcited Ketones: Direct Access to Alkylated Pyrrolophenanthridones. Org Lett 2022; 24:9386-9391. [PMID: 36525615 DOI: 10.1021/acs.orglett.2c03697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we describe a methodology to construct polycyclic pyrrolophenanthridones with an (amino)alkyl side chain that involves visible-light-induced decarboxylative radical addition for the intermolecular dearomatization of indoles and subsequent photoinduced C(sp2)-X bond activation via photoexcited ketones for an intramolecular cyclization cascade. Carboxylic acids serve both as a radical source toward indole dearomatization and as reductants to initiate an electron transfer with photoexcited N-acylindole derivatives in the reaction toward pyrrolophenantridone skeletons, which occurs under mild reaction conditions with good functional group tolerance.
Collapse
Affiliation(s)
- Su Chen
- Laboratory for Organic and Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Serena Pillitteri
- Laboratory for Organic and Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Eduard Fron
- Core Facility for Advanced Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic and Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.,People's Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, RU-117198 Moscow, Russia
| | - Upendra K Sharma
- Laboratory for Organic and Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
40
|
Wang W, Cai Y, Guo R, Brown MK. Synthesis of complex bicyclic scaffolds by intermolecular photosensitized dearomative cycloadditions of activated alkenes and naphthalenes. Chem Sci 2022; 13:13582-13587. [PMID: 36507189 PMCID: PMC9682912 DOI: 10.1039/d2sc04789f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
The rapid buildup of molecular complexity from simple precursors is a key goal in organic chemistry. One strategy to achieve this is through a dearomative cycloaddition wherein a 2D arene and alkene is converted to a 3D structure. In many cases this type of reactivity has been achieved with photochemistry. Despite the prospect of such a reaction, most known variants are intramolecular, which greatly limits the scope of chemical space that can be accessed. Intermolecular variants are known but are generally limited to heterocyclic systems such as indoles or quinolines. Herein, a method for intermolecular dearomative cycloaddition of simple naphthalenes with alkenes is presented. The reactions operate by a photoinduced sensitization of the arene. The bridged bicyclic products are generated with control of regiochemistry and function for a range of alkenes. In addition, the products can serve as useful intermediates as demonstrated in the synthesis of a biologically active benzazapine analog. Mechanistic studies are also included, which support reaction via a triplet excited state and that the selectivity can be rationalized by spin-density calculations.
Collapse
Affiliation(s)
- Wang Wang
- Department of Chemistry, Indiana University800 E. Kirkwood AveBloomingtonIN 47405USA
| | - Yanyao Cai
- Department of Chemistry, Indiana University800 E. Kirkwood AveBloomingtonIN 47405USA
| | - Renyu Guo
- Department of Chemistry, Indiana University800 E. Kirkwood AveBloomingtonIN 47405USA
| | - M. Kevin Brown
- Department of Chemistry, Indiana University800 E. Kirkwood AveBloomingtonIN 47405USA
| |
Collapse
|
41
|
Proessdorf J, Jandl C, Pickl T, Bach T. Arene Activation through Iminium Ions: Product Diversity from Intramolecular Photocycloaddition Reactions. Angew Chem Int Ed Engl 2022; 61:e202208329. [PMID: 35920713 PMCID: PMC9826208 DOI: 10.1002/anie.202208329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 01/11/2023]
Abstract
While 2-alk-ω-enyloxy-sustituted benzaldehydes do not display any photochemical reactivity at the arene core, the respective iminium perchlorates were found to undergo efficient reactions either upon direct irradiation (λ=366 nm) or under sensitizing conditions (λ=420 nm, 2.5 mol% thioxanthen-9-one). Three pathways were found: (a) Most commonly, the reaction led to benzoxacyclic products in which the olefin in the tether underwent a formal, yet unprecedented carboformylation (13 examples, 44-99 % yield). The cascade process occurred with high diastereoselectivity and was found to be stereoconvergent. (b) If a substituent resides in the 3-position of the benzene ring, a meta photocycloaddition was observed which produced tetracyclic skeletons with five stereogenic centers in excellent regio- and diastereoselectivity (2 examples, 58-79 % yield). (c) If the tether was internally substituted at the alkene, an arene photocycloaddition was avoided and an azetidine was formed in an aza Paternò-Büchi reaction (2 examples, 95-98 % yield).
Collapse
Affiliation(s)
- Johanna Proessdorf
- Department Chemie and Catalysis Research Center (CRC)School of Natural SciencesTechnische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC)School of Natural SciencesTechnische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Thomas Pickl
- Department Chemie and Catalysis Research Center (CRC)School of Natural SciencesTechnische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC)School of Natural SciencesTechnische Universität MünchenLichtenbergstraße 485747GarchingGermany
| |
Collapse
|
42
|
Guo R, Adak S, Bellotti P, Gao X, Smith WW, Le SN, Ma J, Houk KN, Glorius F, Chen S, Brown MK. Photochemical Dearomative Cycloadditions of Quinolines and Alkenes: Scope and Mechanism Studies. J Am Chem Soc 2022; 144:17680-17691. [PMID: 36106902 PMCID: PMC9840784 DOI: 10.1021/jacs.2c07726] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Photochemical dearomative cycloaddition has emerged as a useful strategy to rapidly generate molecular complexity. Within this context, stereo- and regiocontrolled intermolecular para-cycloadditions are rare. Herein, a method to achieve photochemical cycloaddition of quinolines and alkenes is shown. Emphasis is placed on generating sterically congested products and reaction of highly substituted alkenes and allenes. In addition, the mechanistic details of the process are studied, which revealed a reversible radical addition and a selectivity-determining radical recombination. The regio- and stereochemical outcome of the reaction is also rationalized.
Collapse
Affiliation(s)
- Renyu Guo
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Souvik Adak
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149Münster, Germany
| | - Xinfeng Gao
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - W Walker Smith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Sam Ngan Le
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland Street, Oberlin, Ohio44074, United States
| | - Jiajia Ma
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149Münster, Germany
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California90095, United States
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149Münster, Germany
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland Street, Oberlin, Ohio44074, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| |
Collapse
|
43
|
Zhu M, Zhang X, Zheng C, You SL. Energy-Transfer-Enabled Dearomative Cycloaddition Reactions of Indoles/Pyrroles via Excited-State Aromatics. Acc Chem Res 2022; 55:2510-2525. [PMID: 35943728 DOI: 10.1021/acs.accounts.2c00412] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Exploring the enormous chemical space through an expedient building-up of molecular diversity is an important goal of organic chemistry. The development of synthetic methods toward molecules with unprecedented structural motifs lays the foundation for wide applications ranging from pharmaceutical chemistry to materials science. In this regard, the dearomatization of arenes has been recognized as a unique strategy since it provides novel retrosynthetic disconnections for various spiro or fused polycyclic molecules with increased saturation and stereoisomerism. However, inherent thermodynamic challenges are associated with dearomatization processes. The disruption of the aromaticity of arene substrates usually requires large energy inputs, which makes harsh conditions necessary for many ground-state dearomatization reactions. Therefore, further expansion of the scope of dearomatization reactions remains a major problem not fully solved in organic chemistry.The past decade has witnessed tremendous progress on photocatalytic reactions under visible light. Particularly, reactions via an energy transfer mechanism have unlocked new opportunities for dearomatization reactions. Mediated by appropriately chosen photosensitizers, aromatic substrates can be excited. This kind of precise energy input might make feasible some dearomatization reactions that are otherwise unfavorable under thermal conditions because of the significant energy increases of the substrates. Nevertheless, the lifetimes of key intermediates in energy-transfer-enabled reactions, such as excited-state aromatics and downstream biradical species, are quite short. How to regulate the reactivities of these transient intermediates to achieve exclusive selectivity toward a certain reaction pathway among many possibilities is a crucial issue to be addressed.Since 2019, our group has reported a series of visible-light-induced dearomative cycloaddition reactions for indole and pyrrole derivatives. It was found that the aromatic units in substrates can be excited under the irradiation of visible light in the presence of a suitable photosensitizer. These excited aromatics readily undergo various [m + n] cycloaddition reactions with appropriately tethered unsaturated functionalities including alkenes, alkynes, N-alkoxy oximes, (hetero)arenes, and vinylcyclopropanes. The reactions yield polycyclic indolines and pyrrolines with highly strained small- and/or medium-sized rings embedded, some of which possess unique bridge- or cagelike topologies. Systematic mechanistic studies confirmed the involvement of an energy transfer process. Density functional theory (DFT) calculations revealed the correlation between the substrate structure and the excitation efficiency, which accelerated the optimization of the reaction parameters. Meanwhile, DFT calculations demonstrated the competition between kinetically and thermodynamically controlled pathways for the open-shell singlet biradical intermediates, which allowed the complete switches from [2 + 2] cycloaddition to 1,5-hydrogen atom transfer in reactions with N-alkoxy oximes and to [4 + 2] cycloaddition in reactions with naphthalene. Furthermore, ab initio molecular dynamics (AIMD) simulations uncovered post-spin crossing dynamic effects, which determine the regioselectivity for the open-shell singlet biradical recombination step in the reactions of pyrrole-derived vinylcyclopropanes.An increasing number of scientists have joined in the research on visible-light-induced dearomative cycloaddition reactions and contributed to more elegant examples in this area. The visible-light-induced dearomatization reaction via energy transfer mechanism, although still in its infancy, has exhibited great potential in the synthesis of molecules that can hardly be accessed by other methods. We believe that future development will further push the boundary of organic chemistry and find applications in the synthesis of functional molecules and related disciplines.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
44
|
Varlet T, Bouchet D, Van Elslande E, Masson G. Decatungstate‐Photocatalyzed Dearomative Hydroacylation of Indoles: Direct Synthesis of 2‐Acylindolines. Chemistry 2022; 28:e202201707. [DOI: 10.1002/chem.202201707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Varlet
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Damien Bouchet
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Elsa Van Elslande
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
- HitCat Seqens-CNRS joint laboratory Seqens'Lab 8 Rue de Rouen 78440 Porcheville France
| |
Collapse
|
45
|
Zhou C, Shatskiy A, Temerdashev AZ, Kärkäs MD, Dinér P. Highly congested spiro-compounds via photoredox-mediated dearomative annulation cascade. Commun Chem 2022; 5:92. [PMID: 36697909 PMCID: PMC9814605 DOI: 10.1038/s42004-022-00706-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/15/2022] [Indexed: 01/28/2023] Open
Abstract
Photo-mediated radical dearomatization involving 5-exo-trig cyclizations has proven to be an important route to accessing spirocyclic compounds, whereas 6-exo-trig spirocyclization has been much less explored. In this work, a dearomative annulation cascade is realized through photoredox-mediated C-O bond activation of aromatic carboxylic acids to produce two kinds of spirocyclic frameworks. Mechanistically, the acyl radical is formed through oxidation of triphenylphosphine and subsequent C-O bond cleavage, followed by a 6-exo-trig cyclization/SET/protonation sequence to generate the spiro-chromanone products in an intramolecular manner. Furthermore, the protocol was extended to more challenging intermolecular tandem sequences consisting of C-O bond cleavage, radical addition to an alkene substrate, and 5-exo-trig cyclization to yield complex spirocyclic lactams.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Chemistry, Division of Organic Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 10044, Stockholm, Sweden
| | - Andrey Shatskiy
- Department of Chemistry, Division of Organic Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 10044, Stockholm, Sweden
| | - Azamat Z Temerdashev
- Department of Analytical Chemistry, Kuban State University, Stavropolskaya St. 149, 350040, Krasnodar, Russia
| | - Markus D Kärkäs
- Department of Chemistry, Division of Organic Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 10044, Stockholm, Sweden
| | - Peter Dinér
- Department of Chemistry, Division of Organic Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 10044, Stockholm, Sweden.
| |
Collapse
|
46
|
Proessdorf J, Jandl C, Pickl T, Bach T. Arene Activation through Iminium Ions: Product Diversity from Intramolecular Photocycloaddition Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Johanna Proessdorf
- Technische Universität München: Technische Universitat Munchen Department Chemie GERMANY
| | - Christian Jandl
- Technische Universität München: Technische Universitat Munchen Department Chemie GERMANY
| | - Thomas Pickl
- Technische Universität München: Technische Universitat Munchen Department Chemie GERMANY
| | - Thorsten Bach
- Technische Universität München Lehrstuhl für Organische Chemie I Lichtenbergstr. 4 85747 Garching GERMANY
| |
Collapse
|
47
|
Yi Y, Xi C. Photo-catalyzed sequential dearomatization/carboxylation of benzyl o-halogenated aryl ether with CO2 leading to spirocyclic carboxylic acids. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63956-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Wang X, Liu F, Xu T. Catalytic diastereoselective construction of multiple contiguous quaternary carbon stereocenters via [2 + 2] cycloaddition and mechanistic insight. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Luo J, Zeng G, Cao X, Yin B. Visible‐Light‐Induced [2+2+1] Dearomative Cascade Cyclization of Indole/Furan Alkynes to Synthesize Sulfonyl Polycycles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiajun Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Guohui Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Xiaohui Cao
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| |
Collapse
|
50
|
Osifalujo EA, Preston‐Herrera C, Betts PC, Satterwhite LR, Froese JT. Improving Toluene Dioxygenase Activity for Ester‐Functionalized Substrates through Enzyme Engineering. ChemistrySelect 2022. [DOI: 10.1002/slct.202200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Cristina Preston‐Herrera
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
- Cristina Preston-Herrera Department of Chemistry and Chemical Biology Cornell University 122 Baker Laboratory Ithaca NY USA 14853
| | - Phillip C. Betts
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
| | - Louis R. Satterwhite
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
| | - Jordan T. Froese
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
| |
Collapse
|