1
|
Manabe Y, Tsutsui Y, Tanaka Y, Yokoyama Y, Ikinaga Y, Nishitani T, Yano K, Miyagawa R, Fukase K, Konishi A, Yasuda M. Cage-Shaped Borate Catalysts Bearing Precisely Controlled Lewis Acidity and Their Application in Glycosylations. J Org Chem 2024; 89:15630-15635. [PMID: 39436826 DOI: 10.1021/acs.joc.4c01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cage-shaped borates, whose Lewis acidity can be precisely modulated by the structural attributes of the triphenolic ligands, were employed as catalysts for glycosylation. Each cage-shaped borate displayed distinctive reactivity; thus, screening of the borate catalysts enabled controllable activation of glycosyl fluorides under mild conditions. Practical glycosylation was achieved by fine-tuning the Lewis acidity tailored to the substrate reactivity, thereby providing a versatile method applicable to the synthesis of complex glycans.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuya Tsutsui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yosuke Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuka Yokoyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuka Ikinaga
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tatsuya Nishitani
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kumpei Yano
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryohei Miyagawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Singh Y, Geringer SA, Demchenko AV. Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chem Rev 2022; 122:11701-11758. [PMID: 35675037 PMCID: PMC9417321 DOI: 10.1021/acs.chemrev.2c00029] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic carbohydrate chemistry have dramatically improved access to common glycans. However, many novel methods still fail to adequately address challenges associated with chemical glycosylation and glycan synthesis. Since a challenge of glycosylation has remained, scientists have been frequently returning to the traditional glycosyl donors. This review is dedicated to glycosyl halides that have played crucial roles in shaping the field of glycosciences and continue to pave the way toward our understanding of chemical glycosylation.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
3
|
Nielsen MM, Pedersen CM. Vessel effects in organic chemical reactions; a century-old, overlooked phenomenon. Chem Sci 2022; 13:6181-6196. [PMID: 35733904 PMCID: PMC9159102 DOI: 10.1039/d2sc01125e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/03/2022] [Indexed: 12/01/2022] Open
Abstract
One of the most intriguing aspects of synthetic chemistry is the interplay of numerous dependent and independent variables en route to achieve a successful, high-yielding chemical transformation. The experienced synthetic chemist will probe many of these variables during reaction development and optimization, which will routinely involve investigation of reaction temperature, solvent, stoichiometry, concentration, time, choice of catalyst, addition sequence or quenching conditions just to name some commonly addressed variables. Remarkably, little attention is typically given to the choice of reaction vessel material as the surface of common laboratory borosilicate glassware is, incorrectly, assumed to be chemically inert. When reviewing the scientific literature, careful consideration of the vessel material is typically only given during the use of well-known glass-etching reagents such as HF, which is typically only handled in HF-resistant, polyfluorinated polymer vessels. However, there are examples of chemical transformations that do not involve such reagents but are still clearly influenced by the choice of reaction vessel material. In the following review, we wish to condense the most significant examples of vessel effects during chemical transformations as well as observations of container-dependent stability of certain molecules. While the primary focus is on synthetic organic chemistry, relevant examples from inorganic chemistry, polymerization reactions, atmospheric chemistry and prebiotic chemistry are also covered.
Collapse
Affiliation(s)
- Michael Martin Nielsen
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen O Denmark
| | | |
Collapse
|
4
|
Nielsen MM, Holmstrøm T, Pedersen CM. Stereoselective
O
‐Glycosylations by Pyrylium Salt Organocatalysis**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michael Martin Nielsen
- University of Copenhagen Department of Chemistry Universitetsparken 5 2100 Copenhagen O Denmark
| | - Thomas Holmstrøm
- University of Copenhagen Department of Chemistry Universitetsparken 5 2100 Copenhagen O Denmark
| | | |
Collapse
|
5
|
Manabe Y, Matsumoto T, Ikinaga Y, Tsutsui Y, Sasaya S, Kadonaga Y, Konishi A, Yasuda M, Uto T, Dai C, Yano K, Shimoyama A, Matsuda A, Fukase K. Revisiting Glycosylations Using Glycosyl Fluoride by BF 3·Et 2O: Activation of Disarmed Glycosyl Fluorides with High Catalytic Turnover. Org Lett 2021; 24:6-10. [PMID: 34932362 DOI: 10.1021/acs.orglett.1c03233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalytic glycosylations with glycosyl fluorides using BF3·Et2O are presented. Glycosylations with both armed and disarmed donors were efficiently catalyzed by 1 mol% of BF3·Et2O in a nitrogen-filled glovebox without the use of dehydrating agents. Our finding is in sharp contrast with conventional BF3·Et2O-mediated glycosylations, where excess Lewis acid and additives are required. Mechanistic studies indicated that the chemical species formed by the reaction of in situ generated HF and glass vessels are involved in the catalytic cycle.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Takuya Matsumoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuka Ikinaga
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuya Tsutsui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shota Sasaya
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichiro Kadonaga
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Division of Science, Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoya Uto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Changhao Dai
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kumpei Yano
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ayana Matsuda
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
6
|
Nielsen MM, Holmstrøm T, Pedersen CM. Stereoselective O-Glycosylations by Pyrylium Salt Organocatalysis. Angew Chem Int Ed Engl 2021; 61:e202115394. [PMID: 34847269 DOI: 10.1002/anie.202115394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 01/06/2023]
Abstract
Despite many years of invention, the field of carbohydrate chemistry remains rather inaccessible to non-specialists, which limits the scientific impact and reach of the discoveries made in the field. Aiming to increase the availability of stereoselective glycosylation chemistry for non-specialists, we have discovered that several commercially available pyrylium salts catalyze stereoselective O-glycosylations of a wide range of phenols and alkyl alcohols. This catalytic reaction utilizes trichloroacetimidates, an easily accessible and synthetically proven electrophile, takes place under air and only initiates when all three reagents are mixed, which should provide better reproducibility by non-specialists. The reaction exhibits varying degrees of stereospecificity, resulting in β-selective glycosylations from α-trichloroacetimidates, whilst an α-selective glycosylation proceeds from β-trichloroacetimidates. A mechanistic study revealed that the reaction likely proceeds via an SN 2-like substitution on the protonated electrophile.
Collapse
Affiliation(s)
- Michael Martin Nielsen
- University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100, Copenhagen O, Denmark
| | - Thomas Holmstrøm
- University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100, Copenhagen O, Denmark
| | - Christian Marcus Pedersen
- University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100, Copenhagen O, Denmark
| |
Collapse
|
7
|
Li Y, Huang KH, Morato NM, Cooks RG. Glass surface as strong base, 'green' heterogeneous catalyst and degradation reagent. Chem Sci 2021; 12:9816-9822. [PMID: 34349955 PMCID: PMC8294000 DOI: 10.1039/d1sc02708e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022] Open
Abstract
Systematic screening of accelerated chemical reactions at solid/solution interfaces has been carried out in high-throughput fashion using desorption electrospray ionization mass spectrometry and it provides evidence that glass surfaces accelerate various base-catalyzed chemical reactions. The reaction types include elimination, solvolysis, condensation and oxidation, whether or not the substrates are pre-charged. In a detailed mechanistic study, we provide evidence using nanoESI showing that glass surfaces can act as strong bases and convert protic solvents into their conjugate bases which then act as bases/nucleophiles when participating in chemical reactions. In aprotic solvents such as acetonitrile, glass surfaces act as 'green' heterogeneous catalysts that can be recovered and reused after simple rinsing. Besides their use in organic reaction catalysis, glass surfaces are also found to act as degradation reagents for phospholipids with increasing extents of degradation occurring at low concentrations. This finding suggests that the storage of base/nucleophile-labile compounds or lipids in glass containers should be avoided.
Collapse
Affiliation(s)
- Yangjie Li
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Kai-Hung Huang
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Nicolás M Morato
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
8
|
Heard DM, Doobary S, Lennox AJJ. 3D Printed Reactionware for Synthetic Electrochemistry with Hydrogen Fluoride Reagents. ChemElectroChem 2021. [DOI: 10.1002/celc.202100496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David M. Heard
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS
| | - Sayad Doobary
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS
| | | |
Collapse
|
9
|
Videcrantz Faurschou N, Marcus Pedersen C. Self-Promoted Stereoselective Glycosylations - Past, Present, Future. CHEM REC 2021; 21:3063-3075. [PMID: 34028947 DOI: 10.1002/tcr.202100092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Indexed: 11/06/2022]
Abstract
Self-promoted glycosylations have generally not received much attention, despite having the advantages of being easy to perform and often highly stereoselective. This account covers the work done in this field and the mechanistic aspects of self-promoted glycosylations are discussed, with a main focus on the stereoselectivity of the reactions. Most self-promoted glycosylations utilize trichloroacetimidate donors, but examples of self-promoted reactions with other donors have been described and will be discussed. Self-promoted glycosylation strategies can provide a basis for new stereoselective glycosylation methodologies.
Collapse
Affiliation(s)
| | - Christian Marcus Pedersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen O, Denmark
| |
Collapse
|
10
|
Gulbe K, Lugiņina J, Jansons E, Kinens A, Turks M. Metal-free glycosylation with glycosyl fluorides in liquid SO 2. Beilstein J Org Chem 2021; 17:964-976. [PMID: 33981367 PMCID: PMC8093551 DOI: 10.3762/bjoc.17.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/17/2021] [Indexed: 11/23/2022] Open
Abstract
Liquid SO2 is a polar solvent that dissolves both covalent and ionic compounds. Sulfur dioxide possesses also Lewis acid properties, including the ability to covalently bind Lewis basic fluoride ions in a relatively stable fluorosulfite anion (FSO2 -). Herein we report the application of liquid SO2 as a promoting solvent for glycosylation with glycosyl fluorides without any external additive. By using various temperature regimes, the method is applied for both armed and disarmed glucose and mannose-derived glycosyl fluorides in moderate to excellent yields. A series of pivaloyl-protected O- and S-mannosides, as well as one example of a C-mannoside, are synthesized to demonstrate the scope of the glycosyl acceptors. The formation of the fluorosulfite species during the glycosylation with glycosyl fluorides in liquid SO2 is proved by 19F NMR spectroscopy. A sulfur dioxide-assisted glycosylation mechanism that proceeds via solvent separated ion pairs is proposed, whereas the observed α,β-selectivity is substrate-controlled and depends on the thermodynamic equilibrium.
Collapse
Affiliation(s)
- Krista Gulbe
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena str. 3, Riga, LV-1048, Latvia
| | - Jevgeņija Lugiņina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena str. 3, Riga, LV-1048, Latvia
| | - Edijs Jansons
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena str. 3, Riga, LV-1048, Latvia
| | - Artis Kinens
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, Riga, LV-1006, Latvia.,Department of Chemistry, University of Latvia, Jelgavas str. 1, Riga, LV-1004, Latvia
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena str. 3, Riga, LV-1048, Latvia
| |
Collapse
|
11
|
Long Q, Gao J, Yan N, Wang P, Li M. (C 6F 5) 3B·(HF) n-catalyzed glycosylation of disarmed glycosyl fluorides and reverse glycosyl fluorides. Org Chem Front 2021. [DOI: 10.1039/d1qo00211b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
(C6F5)3B·(HF)n-catalyzed glycosylation of disarmed glycosyl fluorides and reverse glycosyl fluorides with structurally diverse nucleophiles has been achieved.
Collapse
Affiliation(s)
- Qing Long
- Key Laboratory of Marine Medicine
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Jingru Gao
- Key Laboratory of Marine Medicine
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Ningjie Yan
- Key Laboratory of Marine Medicine
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Peng Wang
- Key Laboratory of Marine Medicine
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Ming Li
- Key Laboratory of Marine Medicine
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| |
Collapse
|
12
|
Tang Y, Reddy DP, Yu B. A dehydrative glycosylation protocol mediated by nonafluorobutanesulfonyl fluoride (NfF). Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Houle C, Savoie PR, Davies C, Jardel D, Champagne PA, Bibal B, Paquin J. Thiourea‐Catalyzed C−F Bond Activation: Amination of Benzylic Fluorides. Chemistry 2020; 26:10620-10625. [DOI: 10.1002/chem.202001905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Camille Houle
- CCVC, PROTEODépartement de chimieUniversité Laval 1045 avenue de la Médecine Québec QC G1V 0A6 Canada
| | - Paul R. Savoie
- CCVC, PROTEODépartement de chimieUniversité Laval 1045 avenue de la Médecine Québec QC G1V 0A6 Canada
| | - Clotilde Davies
- Institut des Sciences MoléculairesUniversité de BordeauxUMR CNRS 5255 351 cours de la Libération 33405 Talence France
| | - Damien Jardel
- Institut des Sciences MoléculairesUniversité de BordeauxUMR CNRS 5255 351 cours de la Libération 33405 Talence France
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental ScienceNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Brigitte Bibal
- Institut des Sciences MoléculairesUniversité de BordeauxUMR CNRS 5255 351 cours de la Libération 33405 Talence France
| | - Jean‐François Paquin
- CCVC, PROTEODépartement de chimieUniversité Laval 1045 avenue de la Médecine Québec QC G1V 0A6 Canada
| |
Collapse
|
14
|
Sati GC, Martin JL, Xu Y, Malakar T, Zimmerman PM, Montgomery J. Fluoride Migration Catalysis Enables Simple, Stereoselective, and Iterative Glycosylation. J Am Chem Soc 2020; 142:7235-7242. [PMID: 32207615 DOI: 10.1021/jacs.0c03165] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Challenges in the assembly of glycosidic bonds in oligosaccharides and glycoconjugates pose a bottleneck in enabling the remarkable promise of advances in the glycosciences. Here, we report a strategy that applies unique features of highly electrophilic boron catalysts, such as tris(pentafluorophenyl)borane, in addressing a number of the current limitations of methods in glycoside synthesis. This approach utilizes glycosyl fluoride donors and silyl ether acceptors while tolerating the Lewis basic environment found in carbohydrates. The method can be carried out at room temperature using air- and moisture-stable forms of the catalyst, with loadings as low as 0.5 mol %. These characteristics enable a wide array of glycosylation patterns to be accessed, including all C1-C2 stereochemical relationships in the glucose, mannose, and rhamnose series. This method allows one-pot, iterative glycosylations to generate oligosaccharides directly from monosaccharide building blocks. These advances enable the rapid and experimentally straightforward preparation of complex oligosaccharide units from simple building blocks.
Collapse
Affiliation(s)
- Girish C Sati
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Joshua L Martin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Yishu Xu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Tanmay Malakar
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - John Montgomery
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|