1
|
Yang Y, Ebel B, Oppel IM, Patureau FW. Nine-Membered Ketolactams by Oxidative Cyclization Expansion. Org Lett 2025. [PMID: 40424094 DOI: 10.1021/acs.orglett.5c01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Considerable progress has been made over decades in synthetic organic chemistry in order to build up molecular complexity, often through the design of advanced catalytic systems. Yet, simply exposing organic molecules to benchmark oxidants in catalyst free conditions can sometimes lead to surprising and highly valuable products. Thus, a synthetic method for accessing rare 9-membered ketolactams is herein described, under mild oxidative conditions. Key 18O and 17O label experiments revealed an unexpected oxygen atom migration event in the ring expansion process. The scope, mechanism, synthetic applications, and 9 to 7 membered ring contraction opportunities are discussed.
Collapse
Affiliation(s)
- Yun Yang
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Ben Ebel
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Iris M Oppel
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
2
|
Potts DS, Komar JK, Jacobson MA, Locht H, Flaherty DW. Consequences of Pore Polarity and Solvent Structure on Epoxide Ring-Opening in Lewis and Brønsted Acid Zeolites. JACS AU 2024; 4:3501-3518. [PMID: 39328744 PMCID: PMC11423312 DOI: 10.1021/jacsau.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 09/28/2024]
Abstract
The structure of solvent molecules within zeolite pores influences the rates and selectivities of catalytic reactions by altering the free energies of reactive species. Here, we examine the consequences of these effects on the kinetics and thermodynamics of 1,2-epoxybutane (C4H8O) ring-opening with methanol (CH3OH) in acetonitrile (CH3CN) cosolvent over Lewis acidic (Zr-BEA) and Brønsted acidic (Al-BEA) zeolites of varying (SiOH) x density. Despite ostensibly identical reaction mechanisms across materials, turnover rates depend differently on (SiOH) x density between acid types. (SiOH) x -rich Zr-BEA (Zr-BEA-OH) provides ∼10 times greater rates than a (SiOH) x -poor material (Zr-BEA-F), while Al-BEA-OH and Al-BEA-F give turnover rates within a factor of 2. Zr-BEA-OH shows more positive activation enthalpies and entropies than Zr-BEA-F across the range of [CH3OH], which reflect the displacement of solvent molecules and lead to greater rates in Zr-BEA-OH due to the dominant role of entropic gains. Measurements of the density and composition of solvent within the pores show that the (SiOH) x nests within Zr-BEA-OH promote hydrogen-bonded solvent structures distinct from Zr-BEA-F, while the Brønsted acid sites confer interactions similar to (SiOH) x nests and give solvent structures within Al-BEA-F that resemble those within Al-BEA-OH. Correlations between apparent activation enthalpies and C4H8O adsorption enthalpies show that interactions with solvent molecules give proportional changes to both C4H8O adsorption and ring-opening transition state formation. The differences in intrapore environment carry consequences for both rates and regioselectivities of epoxide ring-opening, as demonstrated by product regioselectivities that increase by a factor of 3 in response to changes in solvent composition and the type of acid site in the *BEA structure (i.e., Lewis or Brønsted). These results demonstrate the ability to control rates, regioselectivities, and adsorption thermodynamics relevant for industrially relevant liquid-phase reactions through the design of noncovalent interactions among solvating molecules, reactive species, and (SiOH) x functions.
Collapse
Affiliation(s)
- David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jessica K Komar
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew A Jacobson
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huston Locht
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Al-Zoubi RM, Al-Jammal WK, Shkoor M, Bani-Yaseen AD, Khan A, Agouni A, McDonald R. Efficient and regioselective synthesis of ortho-diiodinated homobenzylic alcohol derivatives: in silico evaluation as potential anticancer IDO/TDO inhibitors. Org Biomol Chem 2024; 22:7395-7410. [PMID: 39177253 DOI: 10.1039/d4ob01076k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A simple and direct synthesis of 2,6-diiodophenylethanol building blocks through highly regioselective metalation (MIE)/oxirane SN2-type ring opening of 1,2,3-triiodobenzene is described. A significant impact of the nature of the R1 group on the reactivity of the reaction was discovered but not in terms of site-selectivity. The MIE quenching step is easily controlled by the use of slow-reacting electrophiles "oxiranes" providing solely the ortho-diiodinated homobenzylic alcohol derivatives (internal products) in excellent site-selectivity and with stereoretention. The reaction proceeded without any additives to activate the oxiranes and tolerated a wide range of substrates. The reaction of electron-deficient 1,2,3-triiodoarene systems and neutral oxiranes under the optimized conditions provided the highest isolated yields. The reaction is facile, scalable, efficient, general in scope, and generates handy precursors for further chemical manipulation. In silico interaction analysis revealed that compounds 7a, 7p, 7t and 7z established favourable interactions with the receptors IDO and TDO. Moreover, the molecular simulation results revealed stable dynamics, minimal internal fluctuations, tighter packing and more favourable dynamic features. Furthermore, the 7a-IDO reported a TBE of -26.22 ± 0.24 kcal mol-1, 7t-TDO reported a TBE of -46.66 ± 0.27 kcal mol-1, 7p-TDO reported a TBE of -48.02 ± 0.29 kcal mol-1 while 7z-TDO reported a TBE of -48.51 ± 0.28 kcal mol-1. This shows that these compounds potentially interact with IDO and TDO and consequently cause the inhibition of these targets. Moreover, the BFE results also revealed that this combination suggests that the gas-phase interactions between the components are favorable, but the solvation of the system is unfavorable. In the context of binding, it further means that the protein and ligand have attractive forces when in close proximity as seen in the gas phase, but when solvated, the system experiences an increase in free energy due to interactions with the solvent. This further implies that the binding might be enthalpically favorable due to favorable gas-phase interactions but entropically unfavorable due to unfavorable solvation effects. Our analysis shows that our designed compounds have unmatched pharmacological potential, far surpassing previously reported compounds. This highlights the innovative nature of these derivatives and sets a new benchmark in IDO and TDO drug discovery, indicating their significant potential as effective anticancer inhibitors.
Collapse
Affiliation(s)
- Raed M Al-Zoubi
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha, 2713, Qatar.
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar.
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan.
| | - Walid K Al-Jammal
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan.
| | - Mohanad Shkoor
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | | | - Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Robert McDonald
- Department of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, T6G2G2, Canada.
| |
Collapse
|
4
|
Ru G, Yan X, Wang H, Feng J. Preparation of Single-Helical Curdlan Hydrogel and Its Activation with Coagulation Factor G. Polymers (Basel) 2024; 16:1323. [PMID: 38794515 PMCID: PMC11125141 DOI: 10.3390/polym16101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
β-1,3-glucans are a kind of natural polysaccharide with immunomodulatory, antitumor, and anti-inflammatory properties. Curdlan, as the simplest linear β-1,3-glucan, possesses a variety of biological activities and thermogelation properties. However, due to the complexity and variability of the conformations of curdlan, the exact structure-activity relationship remains unclear. We prepare a chemically crosslinked curdlan hydrogel with the unique single-helical skeleton (named S gel) in 0.4 wt% NaOH at 40 °C, confirmed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). X-ray diffractometry (XRD) data show that S gel maintains the single-helical crystal structure, and the degree of crystallinity of the S gel is ~24%, which is slightly lower than that of the raw powder (~31%). Scanning electron microscopy (SEM) reveals that S gel has a continuous network structure, with large pores measuring 50-200 μm, which is consistent with its high swelling property. Using the 13C high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) method, we determine that most of the single-helical skeleton carbon signals in the swollen S gel are visible, suggesting that the single-helical skeleton of S gel exhibits fascinating mobility at room temperature. Finally, we reveal that the binding of S gel to coagulation Factor G from tachypleus amebocyte lysate increases and saturates at 20 μL tachypleus amebocyte lysate per mg of S gel. Our prepared S gel can avoid the transformation of curdlan conformations and retain the bioactivity of binding to coagulation Factor G, making it a valuable material for use in the food industry and the pharmaceutical field. This work deepens the understanding of the relationship between the single-helical structure and the activity of curdlan, promoting the development and application of β-1,3-glucans.
Collapse
Affiliation(s)
- Geying Ru
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaoshuang Yan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijuan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiwen Feng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
5
|
Remmerswaal WA, de Jong T, van de Vrande KNA, Louwersheimer R, Verwaal T, Filippov DV, Codée JDC, Hansen T. Backside versus Frontside S N2 Reactions of Alkyl Triflates and Alcohols. Chemistry 2024; 30:e202400590. [PMID: 38385647 DOI: 10.1002/chem.202400590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
Nucleophilic substitution reactions are elementary reactions in organic chemistry that are used in many synthetic routes. By quantum chemical methods, we have investigated the intrinsic competition between the backside SN2 (SN2-b) and frontside SN2 (SN2-f) pathways using a set of simple alkyl triflates as the electrophile in combination with a systematic series of phenols and partially fluorinated ethanol nucleophiles. It is revealed how and why the well-established mechanistic preference for the SN2-b pathway slowly erodes and can even be overruled by the unusual SN2-f substitution mechanism going from strong to weak alcohol nucleophiles. Activation strain analyses disclose that the SN2-b pathway is favored for strong alcohol nucleophiles because of the well-known intrinsically more efficient approach to the electrophile resulting in a more stabilizing nucleophile-electrophile interaction. In contrast, the preference of weaker alcohol nucleophiles shifts to the SN2-f pathway, benefiting from a stabilizing hydrogen bond interaction between the incoming alcohol and the leaving group. This hydrogen bond interaction is strengthened by the increased acidity of the weaker alcohol nucleophiles, thereby steering the mechanistic preference toward the frontside SN2 pathway.
Collapse
Affiliation(s)
- Wouter A Remmerswaal
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Tjeerd de Jong
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Koen N A van de Vrande
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Rick Louwersheimer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Thomas Verwaal
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Thomas Hansen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The, Netherlands
| |
Collapse
|
6
|
Yung YL, Lakshmanan S, Kumaresan S, Chu CM, Tham HJ. Mitigation of 3-monochloropropane 1,2 diol ester and glycidyl ester in refined oil - A review. Food Chem 2023; 429:136913. [PMID: 37506659 DOI: 10.1016/j.foodchem.2023.136913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
The 3-Monochloropropane-1, 2-diol ester (3-MCPDE) and glycidyl ester (GE) are formed at high processing temperatures with the presence of respective precursors. Both are potentially harmful to humans, causing adverse health impacts including kidney damage, reproductive problems, and increased risk of cancer. The presence of 3-MCPDE and GE in palm oil is of particular concern because of its widespread use by the food industry. There are a variety of methods for reducing 3-MCPDE and GE. For example, water washing eliminates mostly inorganic chlorides that, in turn, reduce the formation of 3-MCPDE. 3-MCPDE has also been reduced by up to 99% using combinations of methods and replacing stripping steam with alcohol-based media. Activated carbon, clay, antioxidants, potassium-based salts, and other post-refining steps have positively lowered GE, ranging from 10 to 99%. Several approaches have been successful in reducing these process contaminants without affecting other quality metrics.
Collapse
Affiliation(s)
- Yen Li Yung
- Research & Development Department, IOI Edible Oils Sdn. Bhd., KM 12, Sg. Mowtas, Jalan Jaya Chip, off Jalan Batu Sapi, Sandakan, Sabah, Malaysia; Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.
| | - Shyam Lakshmanan
- Research & Development Department, IOI Edible Oils Sdn. Bhd., KM 12, Sg. Mowtas, Jalan Jaya Chip, off Jalan Batu Sapi, Sandakan, Sabah, Malaysia
| | - Sivakumar Kumaresan
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Chi Ming Chu
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Heng Jin Tham
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
7
|
Cui Y, Yang G, Goodwin DR, O’Flanagan CH, Sinha A, Zhang C, Kitko KE, Shin TW, Park D, Aparicio S, CRUK IMAXT Grand Challenge Consortium, Boyden ES. Expansion microscopy using a single anchor molecule for high-yield multiplexed imaging of proteins and RNAs. PLoS One 2023; 18:e0291506. [PMID: 37729182 PMCID: PMC10511132 DOI: 10.1371/journal.pone.0291506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023] Open
Abstract
Expansion microscopy (ExM), by physically enlarging specimens in an isotropic fashion, enables nanoimaging on standard light microscopes. Key to existing ExM protocols is the equipping of different kinds of molecules, with different kinds of anchoring moieties, so they can all be pulled apart from each other by polymer swelling. Here we present a multifunctional anchor, an acrylate epoxide, that enables proteins and RNAs to be equipped with anchors in a single experimental step. This reagent simplifies ExM protocols and reduces cost (by 2-10-fold for a typical multiplexed ExM experiment) compared to previous strategies for equipping RNAs with anchors. We show that this united ExM (uniExM) protocol can be used to preserve and visualize RNA transcripts, proteins in biologically relevant ultrastructures, and sets of RNA transcripts in patient-derived xenograft (PDX) cancer tissues and may support the visualization of other kinds of biomolecular species as well. uniExM may find many uses in the simple, multimodal nanoscale analysis of cells and tissues.
Collapse
Affiliation(s)
- Yi Cui
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Gaojie Yang
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Daniel R. Goodwin
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Ciara H. O’Flanagan
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Anubhav Sinha
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, Massachusetts, United States of America
| | - Chi Zhang
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Kristina E. Kitko
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Tay Won Shin
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Demian Park
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Samuel Aparicio
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Edward S. Boyden
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, United States of America
- Koch Institute for Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
8
|
Hansen T, Vermeeren P, Zijderveld KWJ, Bickelhaupt FM, Hamlin TA. S N 2 versus E2 Competition of Cyclic Ethers. Chemistry 2023; 29:e202301308. [PMID: 37338310 DOI: 10.1002/chem.202301308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
We have quantum chemically studied the influence of ring strain on the competition between the two mechanistically different SN 2 and E2 pathways using a series of archetypal ethers as substrate in combination with a diverse set of Lewis bases (F- , Cl- , Br- , HO- , H3 CO- , HS- , H3 CS- ), using relativistic density functional theory at ZORA-OLYP/QZ4P. The ring strain in the substrate is systematically increased on going from a model acyclic ether to a 6- to 5- to 4- to 3-membered ether ring. We have found that the activation energy of the SN 2 pathway sharply decreases when the ring strain of the system is increased, thus on going from large to small cyclic ethers, the SN 2 reactivity increases. In contrast, the activation energy of the E2 pathway generally rises along this same series, that is, from large to small cyclic ethers. The opposing reactivity trends induce a mechanistic switch in the preferred reaction pathway for strong Lewis bases from E2, for large cyclic substrates, to SN 2, for small cyclic substrates. Weak Lewis bases are unable to overcome the higher intrinsic distortivity of the E2 pathway and, therefore, always favor the less distortive SN 2 reaction.
Collapse
Affiliation(s)
- Thomas Hansen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Pascal Vermeeren
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Kim W J Zijderveld
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen (The, Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Trevor A Hamlin
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| |
Collapse
|
9
|
Funk BE, Pauze M, Lu YC, Moser AJ, Wolf G, West JG. Vitamin B 12 and hydrogen atom transfer cooperative catalysis as a hydride nucleophile mimic in epoxide ring opening. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101372. [PMID: 37235063 PMCID: PMC10210593 DOI: 10.1016/j.xcrp.2023.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Epoxide ring-opening reactions have long been utilized to furnish alcohol products that are valuable in many subfields of chemistry. While many epoxide-opening reactions are known, the hydrogenative opening of epoxides via ionic means remains challenging because of harsh conditions and reactive hydride nucleophiles. Recent progress has shown that radical chemistry can achieve hydrogenative epoxide ring opening under relatively mild conditions; however, these methods invariably require oxophilic metal catalysts and sensitive reagents. In response to these challenges, we report a new approach to epoxide ring-opening hydrogenation using bio-inspired Earth-abundant vitamin B12 and thiol-centric hydrogen atom transfer (HAT) co-catalysis to produce Markovnikov alcohols under visible light irradiation. This powerful reaction system exhibits a broad substrate scope, including a number of electrophilic and reductively labile functionalities that would otherwise be susceptible to reduction or cleavage by hydride nucleophiles, and preliminary mechanistic experiments are consistent with a radical process.
Collapse
Affiliation(s)
- Brian E. Funk
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Martin Pauze
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Yen-Chu Lu
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Austin J. Moser
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Gemma Wolf
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Julian G. West
- Department of Chemistry, Rice University, Houston, TX 77030, USA
- Lead contact
| |
Collapse
|
10
|
Aparna GM, Tetala KKR. Recent Progress in Development and Application of DNA, Protein, Peptide, Glycan, Antibody, and Aptamer Microarrays. Biomolecules 2023; 13:602. [PMID: 37189350 PMCID: PMC10135839 DOI: 10.3390/biom13040602] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Microarrays are one of the trailblazing technologies of the last two decades and have displayed their importance in all the associated fields of biology. They are widely explored to screen, identify, and gain insights on the characteristics traits of biomolecules (individually or in complex solutions). A wide variety of biomolecule-based microarrays (DNA microarrays, protein microarrays, glycan microarrays, antibody microarrays, peptide microarrays, and aptamer microarrays) are either commercially available or fabricated in-house by researchers to explore diverse substrates, surface coating, immobilization techniques, and detection strategies. The aim of this review is to explore the development of biomolecule-based microarray applications since 2018 onwards. Here, we have covered a different array of printing strategies, substrate surface modification, biomolecule immobilization strategies, detection techniques, and biomolecule-based microarray applications. The period of 2018-2022 focused on using biomolecule-based microarrays for the identification of biomarkers, detection of viruses, differentiation of multiple pathogens, etc. A few potential future applications of microarrays could be for personalized medicine, vaccine candidate screening, toxin screening, pathogen identification, and posttranslational modifications.
Collapse
Affiliation(s)
| | - Kishore K. R. Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamilnadu, India;
| |
Collapse
|
11
|
Galeano-Duque Y, Poveda-Jaramillo JC, Mesa M. Considerations about 3-glycidoxypropyltrimethoxysilane reactivity in function of the complexity of aqueous and plasma gel media. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
12
|
Vlachou I, Bokias G. Investigation of Cross-Linked Chitosan-Based Membranes as Potential Adsorbents for the Removal of Cu 2+ Ions from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1926. [PMID: 36903041 PMCID: PMC10004399 DOI: 10.3390/ma16051926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Rapid industrialization has led to huge amounts of organic pollutants and toxic heavy metals into aquatic environment. Among the different strategies explored, adsorption remains until the most convenient process for water remediation. In the present work, novel cross-linked chitosan-based membranes were elaborated as potential adsorbents of Cu2+ ions, using as cross-linking agent a random water-soluble copolymer P(DMAM-co-GMA) of glycidyl methacrylate (GMA) and N,N-dimethylacrylamide (DMAM). Cross-linked polymeric membranes were prepared through casting aqueous solutions of mixtures of P(DMAM-co-GMA) and chitosan hydrochloride, followed by thermal treatment at 120 °C. After deprotonation, the membranes were further explored as potential adsorbents of Cu2+ ions from aqueous CuSO4 solution. The successful complexation of copper ions with unprotonated chitosan was verified visually through the color change of the membranes and quantified through UV-vis spectroscopy. Cross-linked membranes based on unprotonated chitosan adsorb Cu2+ ions efficiently and decrease the concentration of Cu2+ ions in water to a few ppm. In addition, they can act as simple visual sensors for the detection of Cu2+ ions at low concentrations (~0.2 mM). The adsorption kinetics were well-described by a pseudo-second order and intraparticle diffusion model, while the adsorption isotherms followed the Langmuir model, revealing maximum adsorption capacities in the range of 66-130 mg/g. Finally, it was shown that the membranes can be effectively regenerated using aqueous H2SO4 solution and reused.
Collapse
|
13
|
Theoretical Study on the Origin of Abnormal Regioselectivity in Ring-Opening Reaction of Hexafluoropropylene Oxide. Molecules 2023; 28:molecules28041669. [PMID: 36838653 PMCID: PMC9962681 DOI: 10.3390/molecules28041669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
That nucleophiles preferentially attack at the less sterically hindered carbon of epoxides under neutral and basic conditions has been generally accepted as a fundamental rule for predicting the regioselectivity of this type of reaction. However, this rule does not hold for perfluorinated epoxides, such as hexafluoropropylene oxide (HFPO), in which nucleophiles were found to attack at the more hindered CF3 substituted β-C rather than the fluorine substituted α-C. In this contribution, we aim to shed light on the nature of this intriguing regioselectivity by density functional theory methods. Our calculations well reproduced the observed abnormal regioselectivities and revealed that the unusual regiochemical preference for the sterically hindered β-C of HFPO mainly arises from the lower destabilizing distortion energy needed to reach the corresponding ring-opening transition state. The higher distortion energy required for the attack of the less sterically hindered α-C results from a significant strengthening of the C(α)-O bond by the negative hyperconjugation between the lone pair of epoxide O atom and the antibonding C-F orbital.
Collapse
|
14
|
Sun X, Hansen T, Poater J, Hamlin TA, Bickelhaupt FM. Rational design of iron catalysts for C-X bond activation. J Comput Chem 2023; 44:495-505. [PMID: 35137432 PMCID: PMC10078697 DOI: 10.1002/jcc.26818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/10/2023]
Abstract
We have quantum chemically studied the iron-mediated CX bond activation (X = H, Cl, CH3 ) by d8 -FeL4 complexes using relativistic density functional theory at ZORA-OPBE/TZ2P. We find that by either modulating the electronic effects of a generic iron-catalyst by a set of ligands, that is, CO, BF, PH3 , BN(CH3 )2 , or by manipulating structural effects through the introduction of bidentate ligands, that is, PH2 (CH2 )n PH2 with n = 6-1, one can significantly decrease the reaction barrier for the CX bond activation. The combination of both tuning handles causes a decrease of the CH activation barrier from 10.4 to 4.6 kcal mol-1 . Our activation strain and Kohn-Sham molecular orbital analyses reveal that the electronic tuning works via optimizing the catalyst-substrate interaction by introducing a strong second backdonation interaction (i.e., "ligand-assisted" interaction), while the mechanism for structural tuning is mainly caused by the reduction of the required activation strain because of the pre-distortion of the catalyst. In all, we present design principles for iron-based catalysts that mimic the favorable behavior of their well-known palladium analogs in the bond-activation step of cross-coupling reactions.
Collapse
Affiliation(s)
- Xiaobo Sun
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Hansen
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Barcelona, Spain.,Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Trevor A Hamlin
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Friedrich Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Thomas J, Patil R. Enabling Green Manufacture of Polymer Products via Vegetable Oil Epoxides. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jomin Thomas
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Renuka Patil
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
16
|
Dzedulionytė K, Veikšaitė M, Morávek V, Malinauskienė V, Račkauskienė G, Šačkus A, Žukauskaitė A, Arbačiauskienė E. Convenient Synthesis of N-Heterocycle-Fused Tetrahydro-1,4-diazepinones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248666. [PMID: 36557800 PMCID: PMC9783606 DOI: 10.3390/molecules27248666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
A general approach towards the synthesis of tetrahydro-4H-pyrazolo[1,5-a][1,4]diazepin-4-one, tetrahydro[1,4]diazepino[1,2-a]indol-1-one and tetrahydro-1H-benzo[4,5]imidazo[1,2-a][1,4]diazepin-1-one derivatives was introduced. A regioselective strategy was developed for synthesizing ethyl 1-(oxiran-2-ylmethyl)-1H-pyrazole-5-carboxylates from easily accessible 3(5)-aryl- or methyl-1H-pyrazole-5(3)-carboxylates. Obtained intermediates were further treated with amines resulting in oxirane ring-opening and direct cyclisation-yielding target pyrazolo[1,5-a][1,4]diazepin-4-ones. A straightforward two-step synthetic approach was applied to expand the current study and successfully functionalize ethyl 1H-indole- and ethyl 1H-benzo[d]imidazole-2-carboxylates. The structures of fused heterocyclic compounds were confirmed by 1H, 13C, and 15N-NMR spectroscopy and HRMS investigation.
Collapse
Affiliation(s)
- Karolina Dzedulionytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
| | - Melita Veikšaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
| | - Vít Morávek
- Department of Chemical Biology, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Vida Malinauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
| | - Greta Račkauskienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Asta Žukauskaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
- Department of Chemical Biology, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
- Correspondence: (A.Ž.); (E.A.)
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
- Correspondence: (A.Ž.); (E.A.)
| |
Collapse
|
17
|
Bockisch C, Lorance ED, Hartnett HE, Shock EL, Gould IR. Kinetics and Mechanisms of Hydrothermal Dehydration of Cyclic 1,2- and 1,4-Diols. J Org Chem 2022; 87:14299-14307. [PMID: 36227689 DOI: 10.1021/acs.joc.2c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydrothermal dehydration is an attractive method for deoxygenation and upgrading of biofuels because it requires no reagents or catalysts other than superheated water. Although mono-alcohols cleanly deoxygenate via dehydration under many conditions, polyols such as those derived from saccharides and related structures are known to be recalcitrant with respect to dehydration. Here, we describe detailed mechanistic and kinetic studies of hydrothermal dehydration of 1,2- and 1,4-cyclohexanediols as model compounds to investigate how interactions between the hydroxyls can control the reaction. The diols generally dehydrate more slowly and have more complex reaction pathways than simple cyclohexanol. Although hydrogen bonding between hydroxyls is an important feature of the diol reactions, hydrogen bonding on its own does not explain the reduced reactivity. Rather, it is the way that hydrogen bonding influences the balance between the E1 and E2 elimination mechanisms. We also describe the reaction pathways and follow-up secondary reactions for the slower-dehydrating diols.
Collapse
Affiliation(s)
- Christiana Bockisch
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Edward D Lorance
- Department of Chemistry, Vanguard University, Costa Mesa, California 92926, United States
| | - Hilairy E Hartnett
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, United States
| | - Everett L Shock
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, United States
| | - Ian R Gould
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
18
|
Hansen T, Nin-Hill A, Codée JDC, Hamlin TA, Rovira C. Rational Tuning of the Reactivity of Three-Membered Heterocycle Ring Openings via S N 2 Reactions. Chemistry 2022; 28:e202201649. [PMID: 35896443 DOI: 10.1002/chem.202201649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 01/07/2023]
Abstract
The development of small-molecule covalent inhibitors and probes continuously pushes the rapidly evolving field of chemical biology forward. A key element in these molecular tool compounds is the "electrophilic trap" that allows a covalent linkage with the target enzyme. The reactivity of this entity needs to be well balanced to effectively trap the desired enzyme, while not being attacked by off-target nucleophiles. Here we investigate the intrinsic reactivity of substrates containing a class of widely used electrophilic traps, the three-membered heterocycles with a nitrogen (aziridine), phosphorus (phosphirane), oxygen (epoxide) or sulfur atom (thiirane) as heteroatom. Using quantum chemical approaches, we studied the conformational flexibility and nucleophilic ring opening of a series of model substrates, in which these electrophilic traps are mounted on a cyclohexene scaffold (C6 H10 Y with Y=NH, PH, O, S). It was revealed that the activation energy of the ring opening does not necessarily follow the trend that is expected from C-Y leaving-group bond strength, but steeply decreases from Y=NH, to PH, to O, to S. We illustrate that the HOMONu -LUMOSubstrate interaction is an all-important factor for the observed reactivity. In addition, we show that the activation energy of aziridines and phosphiranes can be tuned far below that of the corresponding epoxides and thiiranes by the addition of proper electron-withdrawing ring substituents. Our results provide mechanistic insights to rationally tune the reactivity of this class of popular electrophilic traps and can guide the experimental design of covalent inhibitors and probes for enzymatic activity.
Collapse
Affiliation(s)
- Thomas Hansen
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) &, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028, Barcelona, Spain
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam (The, Netherlands
| | - Alba Nin-Hill
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) &, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden (The, Netherlands
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam (The, Netherlands
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) &, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020, Barcelona, Spain
| |
Collapse
|
19
|
Hansen T, Sun X, Dalla Tiezza M, van Zeist W, van Stralen JNP, Geerke DP, Wolters LP, Poater J, Hamlin TA, Bickelhaupt FM. C-X Bond Activation by Palladium: Steric Shielding versus Steric Attraction. Chemistry 2022; 28:e202201093. [PMID: 35420229 PMCID: PMC9401605 DOI: 10.1002/chem.202201093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Indexed: 11/07/2022]
Abstract
The C-X bond activation (X = H, C) of a series of substituted C(n°)-H and C(n°)-C(m°) bonds with C(n°) and C(m°) = H3 C- (methyl, 0°), CH3 H2 C- (primary, 1°), (CH3 )2 HC- (secondary, 2°), (CH3 )3 C- (tertiary, 3°) by palladium were investigated using relativistic dispersion-corrected density functional theory at ZORA-BLYP-D3(BJ)/TZ2P. The effect of the stepwise introduction of substituents was pinpointed at the C-X bond on the bond activation process. The C(n°)-X bonds become substantially weaker going from C(0°)-X, to C(1°)-X, to C(2°)-X, to C(3°)-X because of the increasing steric repulsion between the C(n°)- and X-group. Interestingly, this often does not lead to a lower barrier for the C(n°)-X bond activation. The C-H activation barrier, for example, decreases from C(0°)-X, to C(1°)-X, to C(2°)-X and then increases again for the very crowded C(3°)-X bond. For the more congested C-C bond, in contrast, the activation barrier always increases as the degree of substitution is increased. Our activation strain and matching energy decomposition analyses reveal that these differences in C-H and C-C bond activation can be traced back to the opposing interplay between steric repulsion across the C-X bond versus that between the catalyst and substrate.
Collapse
Affiliation(s)
- Thomas Hansen
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
- Departament de Química Inorgànicai i Orgànica & IQTCUBUniversitat de BarcelonaMartí i Franquès 1-1108028BarcelonaSpain
| | - Xiaobo Sun
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Departament de Química Inorgànicai i Orgànica & IQTCUBUniversitat de BarcelonaMartí i Franquès 1-1108028BarcelonaSpain
| | - Marco Dalla Tiezza
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Willem‐Jan van Zeist
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Joost N. P. van Stralen
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Daan P. Geerke
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Lando P. Wolters
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Jordi Poater
- Departament de Química Inorgànicai i Orgànica & IQTCUBUniversitat de BarcelonaMartí i Franquès 1-1108028BarcelonaSpain
- ICREAPasseig Lluís Companys 2308010BarcelonaSpain
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
20
|
García-Aznar P, Escorihuela J. Computational insights into the inverse electron-demand Diels-Alder reaction of norbornenes with 1,2,4,5-tetrazines: norbornene substituents' effects on the reaction rate. Org Biomol Chem 2022; 20:6400-6412. [PMID: 35876298 DOI: 10.1039/d2ob01121b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of the reaction rates and mechanism of click chemistry reactions still remains an interesting challenge in organic chemistry. In this regard, the inverse electron demand Diels-Alder (IEDDA) reaction represents a promising metal-free alternative with enhanced reaction rates compared to other reactions of the click chemistry toolbox. Among the different types of dienophiles used in the IEDDA reactions, norbornenes have been widely used given their high stability and fast reaction rates. The inverse electron-demand Diels Alder reaction of 3,6-dipyridin-2-yl-1,2,4,5-tetrazine with a series of norbornene derivatives was studied with quantum mechanical calculations at the M06-2X/6-311+G(d,p) level of theory. The theoretical predictions were confirmed with the experimental data and analyzed with the use of the distortion/interaction model. The obtained results will help in obtaining a better understanding of the factors that affect the relative cycloaddition rates of norbornenes with tetrazines, which are crucial for selectively tuning their efficacy.
Collapse
Affiliation(s)
- Pablo García-Aznar
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Avda. Vicente Andrés Estellés, s/n, Burjassot 46100, València, Spain.
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Avda. Vicente Andrés Estellés, s/n, Burjassot 46100, València, Spain.
| |
Collapse
|
21
|
Ngudsuntear K, Limtrakul S, Arayapranee W. Synthesis of Hydrogenated Natural Rubber Having Epoxide Groups Using Diimide. ACS OMEGA 2022; 7:21483-21491. [PMID: 35785283 PMCID: PMC9245146 DOI: 10.1021/acsomega.2c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Epoxidized natural rubber (ENR) with 50% mol of epoxide groups was synthesized using performic acid generated from the reaction of formic acid/hydrogen peroxide in latex form followed by hydrogenation using diimide generated from hydrazine (N2H4) and hydrogen peroxide (H2O2) with boric acid (H3BO3) as a catalyst. The resulting products (hydrogenated epoxidized natural rubber, HENR) were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR), gel testing, transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The effects of reaction parameters such as N2H4 amount, H2O2 amount, H3BO3 amount, gelatin amount, reaction time, and reaction temperature on the percentage of hydrogenation degree and gel content were investigated. The transmission electron micrographs of the particles confirmed a core/shell structure consisting of a highly unsaturated concentration region as the core encapsulated by a low carbon-carbon double bond concentration region as the shell, which indicated that the rubber particle seemed to be modified from the outer layer to the center of the rubber particle. Overall, the data showed that an increase in the amount of the individual chemicals, reaction time, and temperature increased the hydrogenation degree. However, a higher level of gelatin retarded an increase in the percentage of hydrogenation degree. As the hydrogenation degree increased, the gel content increased due to the ether linkage and the crosslinking reaction triggered through hydroxyl radicals. From DSC measurements, the glass transition temperatures of hydrogenated products increased above those of original rubbers. The thermal stability of hydrogenated products was improved, demonstrated by a decomposition temperature shift to a higher temperature than ENR, as shown by the results from the thermogravimetric analysis. Therefore, the hydrogenated ENR (HENR) exhibited good thermal stability, which could extend the applications of ENR in the automotive and oil industries.
Collapse
Affiliation(s)
- Kitnipat Ngudsuntear
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- Center
of Excellence on Petrochemical and Materials Technology, Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- Center
for Advanced Studies in Industrial Technology, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Sunun Limtrakul
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- Center
of Excellence on Petrochemical and Materials Technology, Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- Center
for Advanced Studies in Industrial Technology, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Wanvimon Arayapranee
- Department
of Chemical Engineering, College of Engineering, Rangsit University, Pathum
Thani, 12000, Thailand
| |
Collapse
|
22
|
Hansen T, Sun X, Dalla Tiezza M, van Zeist W, Poater J, Hamlin TA, Bickelhaupt FM. C(sp n )-X (n=1-3) Bond Activation by Palladium. Chemistry 2022; 28:e202103953. [PMID: 34958486 PMCID: PMC9306469 DOI: 10.1002/chem.202103953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 11/09/2022]
Abstract
We have studied the palladium-mediated activation of C(spn )-X bonds (n = 1-3 and X = H, CH3 , Cl) in archetypal model substrates H3 C-CH2 -X, H2 C=CH-X and HC≡C-X by catalysts PdLn with Ln = no ligand, Cl- , and (PH3 )2 , using relativistic density functional theory at ZORA-BLYP/TZ2P. The oxidative addition barrier decreases along this series, even though the strength of the bonds increases going from C(sp3 )-X, to C(sp2 )-X, to C(sp)-X. Activation strain and matching energy decomposition analyses reveal that the decreased oxidative addition barrier going from sp3 , to sp2 , to sp, originates from a reduction in the destabilizing steric (Pauli) repulsion between catalyst and substrate. This is the direct consequence of the decreasing coordination number of the carbon atom in C(spn )-X, which goes from four, to three, to two along this series. The associated net stabilization of the catalyst-substrate interaction dominates the trend in strain energy which indeed becomes more destabilizing along this same series as the bond becomes stronger from C(sp3 )-X to C(sp)-X.
Collapse
Affiliation(s)
- Thomas Hansen
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
- Departament de Química Inorgànica i Orgànica & IQTCUBUniversitat de Barcelona08028BarcelonaSpain
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Xiaobo Sun
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
- Departament de Química Inorgànica i Orgànica & IQTCUBUniversitat de Barcelona08028BarcelonaSpain
| | - Marco Dalla Tiezza
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Willem‐Jan van Zeist
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUBUniversitat de Barcelona08028BarcelonaSpain
- ICREA, Pg. Lluís Companys 2308010BarcelonaSpain
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - F. M. Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| |
Collapse
|
23
|
Tan S, Zhang D, Nguyen MT, Shutthanandan V, Varga T, Rousseau R, Johnson GE, Glezakou VA, Prabhakaran V. Tuning the Charge and Hydrophobicity of Graphene Oxide Membranes by Functionalization with Ionic Liquids at Epoxide Sites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19031-19042. [PMID: 35420797 DOI: 10.1021/acsami.2c02366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functionalization of graphene oxide (GO) membranes is generally achieved using carboxyl groups as binding sites for ligands. Herein, by taking advantage of the ability of imidazolium-based ionic liquids (ILs) to undergo an epoxide ring-opening reaction, a new approach of GO modification was established, in which ILs were bonded to the abundant epoxides on GO without sacrificing the carboxyl groups. Computational methods confirmed this unique configuration of ILs on GO, which enabled the dispersion of IL/GO flakes in water for facile casting into laminate membranes. Compared with neat GO, the ILs in IL/GO membranes served as spacers that substantially reduced the multi-valent cation mobility, simultaneously facilitated ion desolvation, and increased the water flux across the membrane. Our studies found that the higher separation efficiency of IL/GO membranes may be attributed to the synergistic modification of the hydrophobicity and surface charge. Specifically, the protonated nitrogen of the imidazolium cations altered the surface charge of GO, thereby generating electrostatic repulsion that enhanced the selectivity of cation rejection. On the other hand, the increased length of the alkyl chains bound to the imidazolium rings was found to increase the hydrophobicity of GO, which, in turn, aided the fine-tuning of the water desolvation/transport dynamics at the GO/IL interface to achieve a high water flux. Additionally, the water retention was reduced on the hydrophobic planes, which inhibited GO swelling during aqueous separations. Molecular dynamics simulations revealed increased water diffusivity when ILs were intercalated within GO layers. We establish that without requiring a high energy input, functionalization of GO membranes with ILs may be a promising approach to achieve efficient ion separation and critical material recovery.
Collapse
Affiliation(s)
- Shuai Tan
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Difan Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Manh-Thuong Nguyen
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vaithiyalingam Shutthanandan
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tamas Varga
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Roger Rousseau
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Grant E Johnson
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vassiliki-Alexandra Glezakou
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Venkateshkumar Prabhakaran
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
24
|
Hansen T, Vermeeren P, Bickelhaupt FM, Hamlin TA. Origin of the α‐Effect in S
N
2 Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Thomas Hansen
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Pascal Vermeeren
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| |
Collapse
|
25
|
Hansen T, Vermeeren P, Bickelhaupt FM, Hamlin TA. Origin of the α-Effect in S N 2 Reactions. Angew Chem Int Ed Engl 2021; 60:20840-20848. [PMID: 34087047 PMCID: PMC8518820 DOI: 10.1002/anie.202106053] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Indexed: 11/07/2022]
Abstract
The α-effect is a term used to explain the dramatically enhanced reactivity of α-nucleophiles (R-Y-X:- ) compared to their parent normal nucleophile (R-X:- ) by deviating from the classical Brønsted-type reactivity-basicity relationship. The exact origin of this effect is, however, still heavily under debate. In this work, we have quantum chemically analyzed the α-effect of a set of anionic nucleophiles, including O-, N- and S-based normal and α-nucleophiles, participating in an SN 2 reaction with ethyl chloride using relativistic density functional theory at ZORA-OLYP/QZ4P. Our activation strain and Kohn-Sham molecular orbital analyses identified two criteria an α-nucleophile needs to fulfill in order to show α-effect: (i) a small HOMO lobe on the nucleophilic center, pointing towards the substrate, to reduce the repulsive occupied-occupied orbital overlap and hence (steric) Pauli repulsion with the substrate; and (ii) a sufficiently high energy HOMO to overcome the loss of favorable HOMO-LUMO orbital overlap with the substrate, as a consequence of the first criterion, by reducing the HOMO-LUMO orbital energy gap. If one of these two criteria is not fulfilled, one can expect no α-effect or inverse α-effect.
Collapse
Affiliation(s)
- Thomas Hansen
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| |
Collapse
|
26
|
Zhou S, Di Luca M, Xu X, Ma N, Jung F, Lendlein A. Defeating antibiotic-resistant bacteria with protein-resistant polyGGE film. Clin Hemorheol Microcirc 2021; 79:609-623. [PMID: 34366331 DOI: 10.3233/ch-211250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Biofouling on medical device surfaces, which is initiated by protein adsorption and adhesion of microbes especially the antibiotic-resistant bacteria, attracts global attention for centuries due to its enduring challenges in healthcare. Here, the antifouling effect of hydrophilic poly(glycerol glycidyl ether) (polyGGE) film is explored in comparison to hemocompatible and protein-resistant control polymers. The chemical and thermomechanical stability of polyGGE in hydrated conditions at body temperature was achieved via adjusting UV curing and KOH quenching time. The polyGGE surface is inert to the plasma protein adsorption and interfered the metabolism conditions, biofilm formation and growth of both Gram negative (Gram-) and antibiotic-resistant Gram positive (Gram+) bacteria. These results indicate the potential application of polyGGE for combating the risk of hospital-acquired infections and preventing drug-resistant superbug spreading.
Collapse
Affiliation(s)
- Shuo Zhou
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | | | - Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Nan Ma
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Friedrich Jung
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
27
|
Vermeeren P, Hamlin TA, Bickelhaupt FM. Chemical reactivity from an activation strain perspective. Chem Commun (Camb) 2021; 57:5880-5896. [PMID: 34075969 PMCID: PMC8204247 DOI: 10.1039/d1cc02042k] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Chemical reactions are ubiquitous in the universe, they are at the core of life, and they are essential for industrial processes. The drive for a deep understanding of how something occurs, in this case, the mechanism of a chemical reaction and the factors controlling its reactivity, is intrinsically valuable and an innate quality of humans. The level of insight and degree of understanding afforded by computational chemistry cannot be understated. The activation strain model is one of the most powerful tools in our arsenal to obtain unparalleled insight into reactivity. The relative energy of interacting reactants is evaluated along a reaction energy profile and related to the rigidity of the reactants' molecular structure and the strength of the stabilizing interactions between the deformed reactants: ΔE(ζ) = ΔEstrain(ζ) + ΔEint(ζ). Owing to the connectedness between the activation strain model and Kohn-Sham molecular orbital theory, one is able to obtain a causal relationship between both the sterics and electronics of the reactants and their mutual reactivity. Only when this is accomplished one can eclipse the phenomenological explanations that are commonplace in the literature and textbooks and begin to rationally tune and optimize chemical transformations. We showcase how the activation strain model is the ideal tool to elucidate fundamental organic reactions, the activation of small molecules by metallylenes, and the cycloaddition reactivity of cyclic diene- and dipolarophiles.
Collapse
Affiliation(s)
- Pascal Vermeeren
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands. and Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
28
|
Hansen T, Vermeeren P, Yoshisada R, Filippov DV, van der Marel GA, Codée JDC, Hamlin TA. How Lewis Acids Catalyze Ring-Openings of Cyclohexene Oxide. J Org Chem 2021; 86:3565-3573. [PMID: 33538169 PMCID: PMC7901664 DOI: 10.1021/acs.joc.0c02955] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 11/29/2022]
Abstract
We have quantum chemically studied the Lewis acid-catalyzed epoxide ring-opening reaction of cyclohexene epoxide by MeZH (Z = O, S, and NH) using relativistic dispersion-corrected density functional theory. We found that the reaction barrier of the Lewis acid-catalyzed epoxide ring-opening reactions decreases upon ascending in group 1 along the series Cs+ > Rb+ > K+ > Na+ > Li+ > H+. Our activation strain and Kohn-Sham molecular orbital analyses reveal that the enhanced reactivity of the Lewis acid-catalyzed ring-opening reaction is caused by the reduced steric (Pauli) repulsion between the filled orbitals of the epoxide and the nucleophile, as the Lewis acid polarizes the filled orbitals of the epoxide more efficiently away from the incoming nucleophile. Furthermore, we established that the regioselectivity of these ring-opening reactions is, aside from the "classical" strain control, also dictated by a hitherto unknown mechanism, namely, the steric (Pauli) repulsion between the nucleophile and the substrate, which could be traced back to the asymmetric orbital density on the epoxide. In all, this work again demonstrates that the concept of Pauli-lowering catalysis is a general phenomenon.
Collapse
Affiliation(s)
- Thomas Hansen
- Department of Theoretical Chemistry, Amsterdam
Institute of Molecular and Life Sciences (AIMSS), Amsterdam Center for Multiscale Modeling
(ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081
HV Amsterdam, The Netherlands
- Leiden Institute of Chemistry, Leiden
University, Einsteinweg 55, 2333 CC Leiden, The
Netherlands
| | - Pascal Vermeeren
- Department of Theoretical Chemistry, Amsterdam
Institute of Molecular and Life Sciences (AIMSS), Amsterdam Center for Multiscale Modeling
(ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081
HV Amsterdam, The Netherlands
| | - Ryoji Yoshisada
- Leiden Institute of Chemistry, Leiden
University, Einsteinweg 55, 2333 CC Leiden, The
Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry, Leiden
University, Einsteinweg 55, 2333 CC Leiden, The
Netherlands
| | | | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, Leiden
University, Einsteinweg 55, 2333 CC Leiden, The
Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry, Amsterdam
Institute of Molecular and Life Sciences (AIMSS), Amsterdam Center for Multiscale Modeling
(ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081
HV Amsterdam, The Netherlands
| |
Collapse
|
29
|
Vermeeren P, Hansen T, Jansen P, Swart M, Hamlin TA, Bickelhaupt FM. A Unified Framework for Understanding Nucleophilicity and Protophilicity in the S N 2/E2 Competition. Chemistry 2020; 26:15538-15548. [PMID: 32866336 PMCID: PMC7756690 DOI: 10.1002/chem.202003831] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 11/11/2022]
Abstract
The concepts of nucleophilicity and protophilicity are fundamental and ubiquitous in chemistry. A case in point is bimolecular nucleophilic substitution (SN 2) and base-induced elimination (E2). A Lewis base acting as a strong nucleophile is needed for SN 2 reactions, whereas a Lewis base acting as a strong protophile (i.e., base) is required for E2 reactions. A complicating factor is, however, the fact that a good nucleophile is often a strong protophile. Nevertheless, a sound, physical model that explains, in a transparent manner, when an electron-rich Lewis base acts as a protophile or a nucleophile, which is not just phenomenological, is currently lacking in the literature. To address this fundamental question, the potential energy surfaces of the SN 2 and E2 reactions of X- +C2 H5 Y model systems with X, Y = F, Cl, Br, I, and At, are explored by using relativistic density functional theory at ZORA-OLYP/TZ2P. These explorations have yielded a consistent overview of reactivity trends over a wide range in reactivity and pathways. Activation strain analyses of these reactions reveal the factors that determine the shape of the potential energy surfaces and hence govern the propensity of the Lewis base to act as a nucleophile or protophile. The concepts of "characteristic distortivity" and "transition state acidity" of a reaction are introduced, which have the potential to enable chemists to better understand and design reactions for synthesis.
Collapse
Affiliation(s)
- Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of, Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale, Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - Thomas Hansen
- Department of Theoretical ChemistryAmsterdam Institute of, Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale, Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Paul Jansen
- Department of Theoretical ChemistryAmsterdam Institute of, Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale, Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
- Laboratory of Physical ChemistryETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| | - Marcel Swart
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
- IQCC & Dept. QuímicaUniversitat de GironaCampus Montilivi (Ciències)17003GironaSpain
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of, Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale, Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of, Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale, Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| |
Collapse
|
30
|
Vermeeren P, Hansen T, Grasser M, Silva DR, Hamlin TA, Bickelhaupt FM. S N2 versus E2 Competition of F - and PH 2- Revisited. J Org Chem 2020; 85:14087-14093. [PMID: 33079542 PMCID: PMC7656514 DOI: 10.1021/acs.joc.0c02112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have quantum chemically analyzed the competition between the bimolecular nucleophilic substitution (SN2) and base-induced elimination (E2) pathways for F- + CH3CH2Cl and PH2- + CH3CH2Cl using the activation strain model and Kohn-Sham molecular orbital theory at ZORA-OLYP/QZ4P. Herein, we correct an earlier study that intuitively attributed the mechanistic preferences of F- and PH2-, i.e., E2 and SN2, respectively, to a supposedly unfavorable shift in the polarity of the abstracted β-proton along the PH2--induced E2 pathway while claiming that ″...no correlation between the thermodynamic basicity and E2 rate should be expected.″ Our analyses, however, unequivocally show that it is simply the 6 kcal mol-1 higher proton affinity of F- that enables this base to engage in a more stabilizing orbital interaction with CH3CH2Cl and hence to preferentially react via the E2 pathway, despite the higher characteristic distortivity (more destabilizing activation strain) associated with this pathway. On the other hand, the less basic PH2- has a weaker stabilizing interaction with CH3CH2Cl and is, therefore, unable to overcome the characteristic distortivity of the E2 pathway. Therefore, the mechanistic preference of PH2- is steered to the SN2 reaction channel (less-destabilizing activation strain).
Collapse
Affiliation(s)
- Pascal Vermeeren
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Thomas Hansen
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.,Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Maxime Grasser
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Daniela Rodrigues Silva
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.,Departamento de Quı́mica, Universidade Federal de Lavras, Lavras, Minas Gerais 37200-900, Brazil
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.,Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|