1
|
Li X, Zhang G, Song Q. Recent advances in the construction of tetracoordinate boron compounds. Chem Commun (Camb) 2023; 59:3812-3820. [PMID: 36883254 DOI: 10.1039/d2cc06982b] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Tetracoordinate boron compounds are a highly important class of molecules, which are the key intermediates in many organoboron-related chemical transformations and have unique luminescence properties. However, the synthesis of tetracoordinate boron compounds has never been reviewed. In this highlight, we summarize recent progress on the construction of racemic and chiral tetracoordinate borons, and hope to provide ideas for the assembly of them in more efficient ways, especially for the construction of boron-stereogenic compounds.
Collapse
Affiliation(s)
- Xue Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, China.
| | - Guan Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, China. .,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
2
|
Zhao X, Jia J, Li Z, Li H, Wang Y, Wang G. Stereoselective ZnCl 2-Catalyzed B–H Bond Insertion of Vinyl Carbenes Generated from Cyclopropenes for the Synthesis of Allylboranes. J Org Chem 2022; 87:13053-13061. [DOI: 10.1021/acs.joc.2c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ximei Zhao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jian Jia
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Zengzeng Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Haotian Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yongqiang Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guanghui Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
3
|
Construction of boron-stereogenic compounds via enantioselective Cu-catalyzed desymmetric B-H bond insertion reaction. Nat Commun 2022; 13:2624. [PMID: 35552397 PMCID: PMC9098526 DOI: 10.1038/s41467-022-30287-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/21/2022] [Indexed: 01/15/2023] Open
Abstract
Compared with the well-developed carbon-stereogenic chemistry, the construction of boron-stereogenic compounds remains undeveloped and challenging. Herein, the previously elusive catalytic enantioselective construction of boron-stereogenic compounds has been achieved through enantioselective desymmetric B-H bond insertion reaction. The B-H bond insertion reaction of 2-arylpyridine-boranes with versatile diazo compounds under chiral copper catalyst can afford boron-stereogenic compounds with good to excellent enantioselectivity. Moreover, the synthetic utility of this reaction is demonstrated by the scalability and downstream transformations. DFT calculations provide insights into the reaction mechanism and the origin of stereoselectivity.
Collapse
|
4
|
Huang MY, Zhu SF. Uncommon carbene insertion reactions. Chem Sci 2021; 12:15790-15801. [PMID: 35024104 PMCID: PMC8672736 DOI: 10.1039/d1sc03328j] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023] Open
Abstract
Transition-metal-catalysed carbene insertion reaction is a straightforward and efficient protocol for the construction of carbon–carbon or carbon–heteroatom bonds. Compared to the intensively studied and well-established “common” carbene insertion reactions, including carbene insertion into C–H, Si–H, N–H, O–H, and S–H bonds, several “uncommon” carbene insertion reactions, including carbene insertion into B–H, Sn–H, Ge–H, P–H, F–H, C–C, and M–M bonds, have been neglected for a long time. However, more and more studies on uncommon carbene insertion reactions have been disclosed recently, and clearly demonstrate the great synthetic potential of these reactions. The current perspective reviews the history and the newest advances of uncommon carbene insertion reactions, discusses their potential applications and challenges, and also presents an outlook of this promising field. Transition-metal-catalysed carbene insertion reaction is a straightforward and efficient protocol for the construction of carbon–carbon or carbon–heteroatom bonds.![]()
Collapse
Affiliation(s)
- Ming-Yao Huang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
5
|
Harada S. Development of Novel Methodology Using Diazo Compounds and Metal Catalysts. Chem Pharm Bull (Tokyo) 2021; 69:1170-1178. [PMID: 34853283 DOI: 10.1248/cpb.c21-00757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability to control the reactions of highly active chemical species to enable straightforward synthesis of valuable compounds such as bioactive natural products and pharmaceuticals is a continuing challenge in synthetic organic chemistry. This review describes the development of a methodology using reactive metal-carbene species and its synthetic application in our laboratory. First, regioselective synthesis of γ-amino acid equivalents to take advantage of their metal-dependent reactivities and the mechanistic rationale are presented. Chemoselective and enantioselective dearomatization reactions of several arenes with silver-carbene are also discussed. In the second half of the review, we discuss a carbene-insertion reaction into an amide and urea C-N bond for the assembly of nitrogen-bridged cyclic molecules.
Collapse
Affiliation(s)
- Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
6
|
Zhao YT, Su YX, Li XY, Yang LL, Huang MY, Zhu SF. Dirhodium-Catalyzed Enantioselective B-H Bond Insertion of gem-Diaryl Carbenes: Efficient Access to gem-Diarylmethine Boranes. Angew Chem Int Ed Engl 2021; 60:24214-24219. [PMID: 34476881 DOI: 10.1002/anie.202109447] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Indexed: 01/29/2023]
Abstract
The scarcity of reliable methods for synthesizing chiral gem-diarylmethine borons limits their applications. Herein, we report a method for highly enantioselective dirhodium-catalyzed B-H bond insertion reactions with diaryl diazomethanes as carbene precursors. These reactions afforded chiral gem-diarylmethine borane compounds in high yield (up to 99 % yield), high activity (turnover numbers up to 14 300), high enantioselectivity (up to 99 % ee) and showed unprecedented broad functional group tolerance. The borane compounds synthesized by this method could be efficiently transformed into diaryl methanol, diaryl methyl amine, and triaryl methane derivatives with good stereospecificity. Mechanistic studies suggested that the borane adduct coordinated to the rhodium catalyst and thus interfered with decomposition of the diazomethane, and that insertion of a rhodium carbene (generated from the diaryl diazomethane) into the B-H bond was most likely the rate-determining step.
Collapse
Affiliation(s)
- Yu-Tao Zhao
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Xuan Su
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao-Yu Li
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Liang-Liang Yang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ming-Yao Huang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Cao T, Gao C, Kirillov AM, Fang R, Yang L. DFT quest for mechanism and stereoselectivity in B(C6F5)3-catalyzed cyclopropanation of alkenes with aryldiazoacetates. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Zhao Y, Su Y, Li X, Yang L, Huang M, Zhu S. Dirhodium‐Catalyzed Enantioselective B−H Bond Insertion of
gem
‐Diaryl Carbenes: Efficient Access to
gem
‐Diarylmethine Boranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu‐Tao Zhao
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yu‐Xuan Su
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xiao‐Yu Li
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Liang‐Liang Yang
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ming‐Yao Huang
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Shou‐Fei Zhu
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
9
|
Affiliation(s)
- Ximei Zhao
- School of Chemistry and Materials Science Ludong University Yantai 264025 P. R. China
| | - Guanghui Wang
- School of Chemistry and Materials Science Ludong University Yantai 264025 P. R. China
| | | |
Collapse
|
10
|
Ankudinov NM, Chusov DA, Nelyubina YV, Perekalin DS. Synthesis of Rhodium Complexes with Chiral Diene Ligands via Diastereoselective Coordination and Their Application in the Asymmetric Insertion of Diazo Compounds into E-H Bonds. Angew Chem Int Ed Engl 2021; 60:18712-18720. [PMID: 34057807 DOI: 10.1002/anie.202105179] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Indexed: 12/22/2022]
Abstract
A new method for the synthesis of chiral diene rhodium catalysts is introduced. The readily available racemic tetrafluorobenzobarrelene complexes [(R2 -TFB)RhCl]2 were separated into two enantiomers via selective coordination of one of them with the auxiliary S-salicyl-oxazoline ligand. One of the resulting chiral complexes with an exceptionally bulky diene ligand [(R,R-iPr2 -TFB)RhCl]2 was an efficient catalyst for the asymmetric insertion of diazoesters into B-H and Si-H bonds giving the functionalized organoboranes and silanes with high yields (79-97 %) and enantiomeric purity (87-98 % ee). The stereoselectivity of separation via auxiliary ligand and that of the catalytic reaction was predicted by DFT calculations.
Collapse
Affiliation(s)
- Nikita M Ankudinov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., Moscow, Russia
| | - Denis A Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., Moscow, Russia
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., Moscow, Russia
| | - Dmitry S Perekalin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., Moscow, Russia
| |
Collapse
|
11
|
Ankudinov NM, Chusov DA, Nelyubina YV, Perekalin DS. Synthesis of Rhodium Complexes with Chiral Diene Ligands via Diastereoselective Coordination and Their Application in the Asymmetric Insertion of Diazo Compounds into E−H Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nikita M. Ankudinov
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 Vavilova str. Moscow Russia
| | - Denis A. Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 Vavilova str. Moscow Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 Vavilova str. Moscow Russia
| | - Dmitry S. Perekalin
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 Vavilova str. Moscow Russia
| |
Collapse
|