1
|
Chi D, Qi H, Wang L, Chen S. Pd-Catalyzed cascade Heck cyclization/carbonylation of indoles with aryl formates: enantioselective construction of indolo[2,1- a]isoquinolines. Chem Commun (Camb) 2024; 60:8613-8616. [PMID: 39046243 DOI: 10.1039/d4cc02577f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
An efficient palladium-catalyzed cascade cyclization/carbonylation of indoles with aryl formates to access ester-functionalized indolo[2,1-a]isoquinoline scaffolds has been developed. In addition, an asymmetric variant is also achieved using a chiral phosphine ligand, affording the indolo[2,1-a]isoquinoline products in good yields and enantioselectivities.
Collapse
Affiliation(s)
- Dongmei Chi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Hongbo Qi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Leming Wang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
2
|
Santos CMM, Silva AMS. Transition Metal-Catalyzed Transformations of Chalcones. CHEM REC 2024; 24:e202400060. [PMID: 39008887 DOI: 10.1002/tcr.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Indexed: 07/17/2024]
Abstract
Chalcones are a class of naturally occurring flavonoid compounds associated to a variety of biological and pharmacological properties. Several reviews have been published describing the synthesis and biological properties of a vast array of analogues. However, overviews on the reactivity of chalcones has only been explored in a few accounts. To fill this gap, a systematic survey on the most recent developments in the transition metal-catalyzed transformation of chalcones was performed. The chemistry of copper, palladium, zinc, iron, manganese, nickel, ruthenium, cobalt, rhodium, iridium, silver, indium, gold, titanium, platinum, among others, as versatile catalysts will be highlighted, covering the literature from year 2000 to 2023, in more than 380 publications.
Collapse
Affiliation(s)
- Clementina M M Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Bragança, Apolónia, 5300-253, Bragança, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Fessler J, Junge K, Beller M. Applying green chemistry principles to iron catalysis: mild and selective domino synthesis of pyrroles from nitroarenes. Chem Sci 2023; 14:11374-11380. [PMID: 37886090 PMCID: PMC10599485 DOI: 10.1039/d3sc02879h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 10/28/2023] Open
Abstract
An efficient and general cascade synthesis of pyrroles from nitroarenes using an acid-tolerant homogeneous iron catalyst is presented. Initial (transfer) hydrogenation using the commercially available iron-Tetraphos catalyst is followed by acid catalysed Paal-Knorr condensation. Both formic acid and molecular hydrogen can be used as green reductants in this process. Particularly, under transfer hydrogenation conditions, the homogeneous catalyst shows remarkable reactivity at low temperatures, high functional group tolerance and excellent chemoselectivity transforming a wide variety of substrates. Compared to classical heterogeneous catalysts, this system presents complementing reactivity, showing none of the typical side reactions such as dehalogenation, debenzylation, arene or olefin hydrogenation. It thereby enhances the chemical toolbox in terms of orthogonal reactivity. The methodology was successfully applied to the late-stage modification of multi-functional drug(-like) molecules as well as to the one-pot synthesis of the bioactive agent BM-635.
Collapse
Affiliation(s)
- Johannes Fessler
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
4
|
Ferretti F, Fouad MA, Abbo C, Ragaini F. Effective Synthesis of 4-Quinolones by Reductive Cyclization of 2'-Nitrochalcones Using Formic Acid as a CO Surrogate. Molecules 2023; 28:5424. [PMID: 37513296 PMCID: PMC10386197 DOI: 10.3390/molecules28145424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
4-Quinolones are the structural elements of many pharmaceutically active compounds. Although several approaches are known for their synthesis, the introduction of an aryl ring in position 2 is problematic with most of them. The reductive cyclization of o-nitrochalcones by pressurized CO, catalyzed by ruthenium or palladium complexes, has been previously reported to be a viable synthetic strategy for this aim, but the need for pressurized CO lines and autoclaves has prevented its widespread use. In this paper, we describe the use of the formic acid/acetic anhydride mixture as a CO surrogate, which allows us to perform the reaction in a cheap and commercially available thick-walled glass tube without adding any gaseous reagent. The obtained yields are often high and compare favorably with those previously reported by the use of pressurized CO. The procedure was applied to a three-step synthesis from commercially available and cheap reagents of the alkaloid Graveoline.
Collapse
Affiliation(s)
- Francesco Ferretti
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Manar Ahmed Fouad
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Cecilia Abbo
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Fabio Ragaini
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
5
|
Fouad M, Ferretti F, Ragaini F. Formic Acid as Carbon Monoxide Source in the Palladium-Catalyzed N-Heterocyclization of o-Nitrostyrenes to Indoles. J Org Chem 2023; 88:5108-5117. [PMID: 36655880 PMCID: PMC10127278 DOI: 10.1021/acs.joc.2c02613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Indexed: 01/20/2023]
Abstract
The reductive cyclization reaction of o-nitrostyrenes to generate indoles has been investigated for three decades using CO as a cheap reducing agent, but it remains an interesting area of research and improvements. However, using toxic CO gas has several drawbacks. As a result, it is highly preferable to use safe and efficient surrogates for in situ generation of CO from nontoxic and affordable sources. Among several CO sources that have been previously explored for the generation of gaseous CO, here we report the use of cheap and readily available formic acid as an effective reductant for the reductive cyclization of o-nitrostyrenes. The reaction is air and water tolerant and provides the desired indoles in yields up to 99%, at a low catalyst loading (0.5 mol %) and without generating toxic or difficult to separate byproducts. A cheap glass thick-walled "pressure tube" can be used instead of less available autoclaves, even on a 2 g scale, thus widening the applicability of our protocol.
Collapse
Affiliation(s)
- Manar
Ahmed Fouad
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via C. Golgi 19, 20133 Milano, Italy
- Chemistry
Department, Faculty of Science, Alexandria
University, P.O. Box 426, Alexandria 21321, Egypt
| | - Francesco Ferretti
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Fabio Ragaini
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
6
|
Bera A, Azad SA, Patra P, Sepay N, Jana R, Das T, Saha A, Samanta S. Synthesis of Multifused Pyrrolo[1,2- a]quinoline Systems by Tandem Aza-Michael-Aldol Reactions and Their Application to Molecular Sensing Studies. J Org Chem 2023; 88:5622-5638. [PMID: 36996425 DOI: 10.1021/acs.joc.3c00109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Herein, we have presented a weak acid-promoted tandem aza-Michael-aldol strategy for the synthesis of diversely fused pyrrolo[1,2-a]quinoline (tricyclic to pentacyclic scaffolds) by the construction of both pyrrole and quinoline ring in one pot. The described protocol fabricated two C-N bonds and one C-C bond in the pyrrole-quinoline rings which have been sequentially formed under transition-metal-free conditions by the extrusion of eco-friendly water molecules. A ketorolac drug analogue has been synthesized following the current protocol, and one of the synthesized tricyclic pyrrolo[1,2-a]quinoline fluorophores has been used to detect highly toxic picric acid via the fluorescence quenching effect.
Collapse
Affiliation(s)
- Anirban Bera
- Department of Chemistry, Bidhannagar College, Kolkata 700064, India
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | | - Prasanta Patra
- Jhargram Raj College, Jhargram, West Bengal 721507, India
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata 700 017, India
| | - Rathin Jana
- Department of Chemistry, Shahid Matangini Hazra Govt. General Degree College for Women, Kulberia, West Bengal 721649, India
| | - Tapas Das
- Department of Chemistry, National Institute of Technology, Jamshedpur 831014, India
| | - Amit Saha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|
7
|
Molnár Á. Recent Advances in the Synthesis of Five‐membered Nitrogen Heterocycles Induced by Palladium Ions and Complexes. ChemistrySelect 2023. [DOI: 10.1002/slct.202300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
8
|
Synthesis of aromatic carbamate via palladium catalyzed reductive carbonylation reaction of Nitro benzene: An alternative approach with different nucleophiles other than MeOH. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
9
|
Phenyl Formate as a CO Surrogate for the Reductive Cyclization of Organic Nitro Compounds to Yield Different N-Heterocycles: No Need for Autoclaves and Pressurized Carbon Monoxide. Catalysts 2023. [DOI: 10.3390/catal13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The reductive cyclization of different organic nitro compounds by carbon monoxide, catalyzed by transition metal complexes, is a very efficient and clean strategy for the synthesis of many N-heterocycles. However, its use requires the use of autoclaves and pressurized CO lines. In this perspective, the authors will present the results obtained in their laboratories on the use of phenyl formate as a convenient CO surrogate, able to liberate carbon monoxide under the reaction conditions and allowing the use of a cheap glass pressure tube as a reaction vessel. In most cases, yields were better than those previously reported by the use of pressurized CO, proving that the use of CO surrogates can be a viable alternative to the gaseous reagent.
Collapse
|
10
|
Boyarskaya DV, Ongaro A, Piemontesi C, Wang Q, Zhu J. Synthesis of 3-Acyloxyindolenines by TiCl 3-Mediated Reductive Cyclization of 2-( ortho-Nitroaryl)-Substituted Enol Esters. Org Lett 2022; 24:7004-7008. [PMID: 36121329 DOI: 10.1021/acs.orglett.2c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the presence of TiCl3, the reductive cyclization of tetrasubstituted enol esters bearing a 2-(ortho-nitroaryl) substituent affords 3-acyloxy-2,3-disubstituted indolenines in good yields. A domino process involving the partial reduction of nitro to a nitroso group followed by 5-center-6π-electrocyclization, 1,2-acyloxy migration, and the further reduction of the resulting nitrone intermediate accounts for the reaction outcome. The so-obtained indolenines are converted smoothly to 2,2-disubstituted oxindoles via a sequence of saponification and semipinacol rearrangement.
Collapse
Affiliation(s)
- Dina V Boyarskaya
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Alberto Ongaro
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| |
Collapse
|
11
|
Khanal HD, Perumal M, Lee YR. Annulation strategies for diverse heterocycles via the reductive transformation of 2-nitrostyrenes. Org Biomol Chem 2022; 20:7675-7693. [PMID: 35971908 DOI: 10.1039/d2ob01149b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of the stable nitro group is a fundamental and widely used transformation for the construction of complex and functionalized heterocyclic architectures. The unfolding of the reactivity of the nitro group in the 2-nitrostyrene moiety not only triggers the formation of carbon-nitrogen bonds, but also offers the opportunity for annulation and heteroannulation, thereby providing a cascade process for the synthesis of highly conjugated natural and unnatural molecules. In this review, we comprehensively discuss the use of 2-nitrostyrene motifs in the synthesis of various N-heterocycles. We offer readers an overview of the synthetic achievements achieved to date, highlighting their important features, reactivities, and mechanisms.
Collapse
Affiliation(s)
- Hari Datta Khanal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Muthuraja Perumal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
12
|
Ferreira M, Munaretto LS, Gouvêa DP, Bortoluzzi AJ, Sa MM. Diversity‐Oriented Synthesis of 2‐Iminothiazolidines: Pushing the Boundaries of the Domino Nucleophilic Displacement/Intramolecular anti‐Michael Addition Process. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | - Marcus M. Sa
- Universidade Federal de Santa Catarina Chemistry campus Trindade 88040-900 Florianopolis BRAZIL
| |
Collapse
|
13
|
Kraikruan P, Rakchaya I, Sang-aroon P, Chuanopparat N, Ngernmeesri P. One-pot synthesis of 2-arylindole derivatives under transition-metal-free conditions. Synlett 2022. [DOI: 10.1055/a-1796-9647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new and simple method to prepare 2-arylindole derivatives under transition-metal-free conditions has been developed. When N-acetyl-2-methyl-3-nitroaniline was treated with 2-fluorobenzaldehydes in the presence of Cs2CO3 in DMF at 60 ⁰C, the desired indoles were typically obtained in moderate to good yields (up to 83%). Other aniline substrates were also employed, but only the Knoevenagel condensation occurred to give the corresponding diarylethenes in moderate to excellent yields.
Collapse
Affiliation(s)
| | - Intouch Rakchaya
- Department of Chemistry, Kasetsart University, Bangkok, Thailand
| | | | | | | |
Collapse
|
14
|
Ramadan DR, Ferretti F, Ragaini F. Catalytic Reductive Cyclization of 2-Nitrobiphenyls Using Phenyl formate as CO Surrogate: a Robust Synthesis of 9H-Carbazoles. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Synthesis of Indoles by Palladium-Catalyzed Reductive Cyclization of β-Nitrostyrenes with Phenyl Formate as a CO Surrogate. Catalysts 2022. [DOI: 10.3390/catal12010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The reductive cyclization of suitably substituted organic nitro compounds by carbon monoxide is a very appealing technique for the synthesis of heterocycles because of its atom efficiency and easiness of separation of the only stoichiometric byproduct CO2, but the need for pressurized CO has hampered its diffusion. We have recently reported on the synthesis of indoles by reductive cyclization of o-nitrostyrenes using phenyl formate as a CO surrogate, using a palladium/1,10-phenanthroline complex as catalyst. However, depending on the desired substituents on the structure, the use of β-nitrostyrenes as alternative reagents may be advantageous. We report here the results of our study on the possibility to use phenyl formate as a CO surrogate in the synthesis of indoles by reductive cyclization of β-nitrostyrenes, using PdCl2(CH3CN)2 + phenanthroline as the catalyst. It turned out that good results can be obtained when the starting nitrostyrene bears an aryl substituent in the alpha position. However, when no such substituent is present, only fair yield of indole can be obtained because the base required to decompose the formate also catalyzes an oligo-polymerization of the starting styrene. The reaction can be performed in a single glass pressure tube, a cheap and easily available piece of equipment.
Collapse
|