1
|
Faber T, Engelhardt S, Cornella J. Aryl Silicon Nucleophiles in Bismuth Catalysis. Angew Chem Int Ed Engl 2025; 64:e202424698. [PMID: 39927663 DOI: 10.1002/anie.202424698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
We present a catalytic protocol utilizing bismuth for the synthesis of aromatic fluorinated thiosulfones, showcasing a seminal example of aryl silicon nucleophiles in Bi catalysis. This catalytic process is enabled by a series of Bi-based organometallic transformations, including an unprecedented transmetalation of aryl silicates to Bi(III) complexes and the formal migratory insertion of sulfur dioxide (SO2) into the Bi-C bond. The protocol is compatible with a wide range of anionic and neutral Ar-Si compounds, including heterocycles. Stoichiometric investigations of individual organometallic steps provide strong evidence supporting a Bi-redox-neutral catalytic cycle.
Collapse
Affiliation(s)
- Teresa Faber
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Sophia Engelhardt
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Conde RS, Torres Barroso L, Pérez Edighill SG, Yerien DE, Lantaño B, Baroncini M, Barata-Vallejo S, Postigo A. Photocatalytic Perfluoroalkylation of Disulfides and Diselenides. Syntheses of Perfluoroalkyl Thio- and Seleno-ethers. J Org Chem 2024; 89:10867-10877. [PMID: 39034469 DOI: 10.1021/acs.joc.4c01149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The synthesis of alkyl(aryl)-fluoroalkyl sulfanyl [R(Ar)-S-RF] and aryl-fluoroalkyl selenolyl (Ar-Se-RF) ethers through visible-light photocatalysis has been successfully carried out. This process involves disulfides, and diselenides [R(Ar)-X-X-R(Ar), where X = S or Se], and fluoroalkyl iodides (RF-I) in the presence of a base as an additive under photocatalysis. The photocatalyst Eosin Y and green light-emitting diodes are utilized for irradiation of R(Ar)-S-RF and Ar-Se-RF syntheses. Our method integrates low-energy visible-light photocatalysis, commercially available perfluoroalkylating reagents (RF-I), and easily obtainable disulfides and diselenides as starting materials. Mechanistic studies and a detailed synthetic procedure for (Ar)-S-RF on a large scale are presented.
Collapse
Affiliation(s)
- Romina S Conde
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Loydel Torres Barroso
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Sheila G Pérez Edighill
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Damian E Yerien
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Beatriz Lantaño
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Massimo Baroncini
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, viale Fanin 44, 40127 Bologna, Italy
- CLAN-Center for Light-Activated Nanostructures - Istituto ISOF-CNR, via Gobetti 101, 40129 Bologna, Italy
| | - Sebastian Barata-Vallejo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
- CLAN-Center for Light-Activated Nanostructures - Istituto ISOF-CNR, via Gobetti 101, 40129 Bologna, Italy
- Istituto per la Sintesis Organica e la Fotorreattivita, ISOF, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Al Postigo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| |
Collapse
|
3
|
Xiao Y, Zhou H, Shi P, Zhao X, Liu H, Li X. Clickable tryptophan modification for late-stage diversification of native peptides. SCIENCE ADVANCES 2024; 10:eadp9958. [PMID: 38985871 PMCID: PMC11235173 DOI: 10.1126/sciadv.adp9958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
As the least abundant residue in proteins, tryptophan widely exists in peptide drugs and bioactive natural products and contributes to drug-target interactions in multiple ways. We report here a clickable tryptophan modification for late-stage diversification of native peptides, via catalyst-free C2-sulfenylation with 8-quinoline thiosulfonate reagents in trifluoroacetic acid (TFA). A wide range of groups including trifluoromethylthio (SCF3), difluoromethylthio (SCF2H), (ethoxycarbonyl)difluoromethylthio (SCF2CO2Et), alkylthio, and arylthio were readily incorporated. The rapid reaction kinetics of Trp modification and full tolerance with other 19 proteinogenic amino acids, as well as the super dissolving capability of TFA, render this method suitable for all kinds of Trp-containing peptides without limitations from sequences, hydrophobicity, and aggregation propensity. The late-stage modification of 15 therapeutic peptides (1.0 to 7.6 kilodaltons) and the improved bioactivity and serum stability of SCF3- and SCF2H-modified melittin analogs illustrated the effectiveness of this method and its potential in pharmacokinetic property improvement.
Collapse
Affiliation(s)
- Yisa Xiao
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong Province 515063, P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xueqian Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
4
|
Fang Y, Liu C, Tang J, Pei Z, Chen Z. Visible-Light Photocatalytic Synthesis of Difluoromethylated Selenides from Selenosulfonates through a Radical Process. J Org Chem 2023; 88:12658-12667. [PMID: 37595016 DOI: 10.1021/acs.joc.3c01352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
A photocatalytic synthesis of difluoromethylated selenides from selenosulfonates is described here. Bench-stable difluoromethyl phosphonium salt [Ph3PCF2H]Br reacts smoothly with selenosulfonates to give a series of functionalized difluoromethylated selenides in moderate to good yields via a radical process. This protocol is free of a stoichiometric base and reductant, has tolerance of functional groups, and has successful late-stage modification of bioactive molecules, which provides facile access to molecules of pharmaceutical relevance.
Collapse
Affiliation(s)
- Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Zheng Pei
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Zhengping Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
5
|
Zhou X, Pyle D, Zhang Z, Dong G. Deacylative Thiolation by Redox-Neutral Aromatization-Driven C-C Fragmentation of Ketones. Angew Chem Int Ed Engl 2023; 62:e202213691. [PMID: 36800315 PMCID: PMC10240504 DOI: 10.1002/anie.202213691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/05/2022] [Accepted: 02/17/2023] [Indexed: 02/18/2023]
Abstract
Herein we report the development of deacylative thiolation of diverse methyl ketones. The reaction is redox-neutral, and heavy-metal-free, which provides a new way to introduce thioether groups site-specifically to unactivated aliphatic positions. It also features excellent functional group tolerance and broad substrate scope, thus allowing late-stage derivatization. The process benefits from efficient condensation between the activation reagent and ketone substrates, which triggers aromatization-driven C-C fragmentation and rapid radical coupling with thiosulfonates. Experimental and computational mechanistic studies suggest the involvement of a radical chain pathway.
Collapse
Affiliation(s)
- Xukai Zhou
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| | - Daniel Pyle
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| | - Zining Zhang
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| | - Guangbin Dong
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| |
Collapse
|
6
|
Zhang Y, Liu W, Xu Y, Liu Y, Peng J, Wang M, Bai Y, Lu H, Shi Z, Shao X. S-(Methyl- d3) Arylsulfonothioates: A Family of Robust, Shelf-Stable, and Easily Scalable Reagents for Direct Trideuteromethylthiolation. Org Lett 2022; 24:6794-6799. [DOI: 10.1021/acs.orglett.2c02680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Wen Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Yuenian Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Yong Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Jiajian Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P.R. China
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P.R. China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| |
Collapse
|
7
|
de Zordo‐Banliat A, Grollier K, Vigier J, Jeanneau E, Dagousset G, Pegot B, Magnier E, Billard T. Vinylic Trifluoromethylselenolation via Pd‐Catalyzed C−H Activation. Chemistry 2022; 28:e202202299. [DOI: 10.1002/chem.202202299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Arnaud de Zordo‐Banliat
- Institut Lavoisier de Versailles (UMR CNRS 8180) Université Paris-Saclay UVSQ CNRS 78035 Versailles France
| | - Kevin Grollier
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon CNRS Université Lyon 1 CPE Lyon 1 rue Victor Grignard 69622 Lyon France
| | - Jordan Vigier
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon CNRS Université Lyon 1 CPE Lyon 1 rue Victor Grignard 69622 Lyon France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon Univ Lyon Université Lyon 1 5 rue de la Doua 69100 Villeurbanne France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles (UMR CNRS 8180) Université Paris-Saclay UVSQ CNRS 78035 Versailles France
| | - Bruce Pegot
- Institut Lavoisier de Versailles (UMR CNRS 8180) Université Paris-Saclay UVSQ CNRS 78035 Versailles France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles (UMR CNRS 8180) Université Paris-Saclay UVSQ CNRS 78035 Versailles France
| | - Thierry Billard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon CNRS Université Lyon 1 CPE Lyon 1 rue Victor Grignard 69622 Lyon France
| |
Collapse
|
8
|
Chen X, Shen YT, Zhao ZW, Hou YJ, Sun BX, Fan TG, Li YM. Oxy‐/Amino‐Difluoromethylthiolation of Alkenes: Synthesis of HCF2S‐Containing Isoxazolines and Pyrazolines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Chen
- Kunming University of Science and Technology CHINA
| | - Yun-Tao Shen
- Kunming University of Science and Technology CHINA
| | - Zhi-Wei Zhao
- Kunming University of Science and Technology CHINA
| | - Yu-Jian Hou
- Kunming University of Science and Technology CHINA
| | - Bo-Xun Sun
- Kunming University of Science and Technology CHINA
| | - Tai-Gang Fan
- Kunming University of Science and Technology CHINA
| | - Ya-Min Li
- Kunming University of Science and Technology CHINA
| |
Collapse
|
9
|
Wang X, Meng J, Zhao D, Tang S, Sun K. Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Guo R, Zhang X, Bu X, Wang M, Zhao B, Gao Y, Jia Q, Wang Y. Se
‐(Fluoromethyl) Benzenesulfonoselenoates: Shelf‐Stable, Easily Available Reagents for Monofluoromethylselenolation. Chemistry 2022; 28:e202200981. [DOI: 10.1002/chem.202200981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Rui‐Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Xing‐Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Xian‐Pan Bu
- Ankang R&D Center for Se-enriched Products, Key Laboratory of Se-enriched Products Development and Quality Control Ministry of Agriculture and Rural Affairs Ankang Shaanxi 725000 P. R. China
| | - Meng‐Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Bao‐Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Ya‐Ru Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Yong‐Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| |
Collapse
|
11
|
|
12
|
Fang Y, Li X, Liu C, Tang J, Chen Z. Nucleophilic Substitution of Selenosulfonates with Me 3SiCF 2Br: Facile and Efficient Access to Bromodifluoromethylated Selenides under Metal-Free Conditions. J Org Chem 2021; 86:18081-18093. [PMID: 34823360 DOI: 10.1021/acs.joc.1c02349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A facile synthesis of bromodifluoromethylated selenides under metal-free conditions is described here. Commercially available Me3SiCF2Br and bench-stable selenosulfonates react smoothly to give a broad scope of alkyl- and aryl-substituted bromodifluoromethylated selenides in moderate to good yields via a difluorocarbene intermediate. This protocol features a short reaction time, the absence of toxic waste, good scalability, and successful late-stage modification of bioactive molecules. In addition, the title products can be easily converted to different fluorinated and 18F-labeled selenides.
Collapse
Affiliation(s)
- Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xin Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Zhengping Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|