1
|
Nan FB, Gu YX, Wang JL, Chen SD. Electroacupuncture promotes macrophage/microglial M2 polarization and suppresses inflammatory pain through AMPK. Neuroreport 2024; 35:343-351. [PMID: 38526969 DOI: 10.1097/wnr.0000000000002005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Inflammatory pain, the most prevalent disease globally, remains challenging to manage. Electroacupuncture emerges as an effective therapy, yet its underlying mechanisms are not fully understood. This study investigates whether adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-regulated silent information regulator 1 (SIRT1) contributes to electroacupuncture's antinociceptive effects by modulating macrophage/microglial polarization in the spinal dorsal horn of a mouse model of inflammatory pain. In this study, mice, introduced to inflammatory pain through subcutaneous injections of complete freund's adjuvant (CFA) in the plantar area, underwent electroacupuncture therapy every alternate day for 30-min sessions. The assessment of mechanical allodynia and thermal hyperalgesia in these subjects was carried out using paw withdrawal frequency and paw withdrawal latency measurements, respectively. Western blot analysis measured levels of AMPK, phosphorylation-adenosine 5'-monophosphate (AMP)-activated protein kinase, SIRT1, inducible nitric oxide synthase, cluster of differentiation 86, arginase 1, and interleukin 10. In contrast to the group treated solely with CFA, the cohort receiving both CFA and electroacupuncture demonstrated notable decreases in both thermal hyperalgesia and mechanical allodynia. This was accompanied by a marked enhancement in AMPK phosphorylation levels. AMPK knockdown reversed electroacupuncture's analgesic effects and reduced M2 macrophage/microglial polarization enhancement. Additionally, AMPK knockdown significantly weakened electroacupuncture-induced SIRT1 upregulation, and EX-527 injection attenuated electroacupuncture's facilitation of M2 macrophage/microglial polarization without affecting AMPK phosphorylation levels. Furthermore, combining electroacupuncture with SRT1720 enhanced the analgesic effect of SRT1720. Our findings suggest that AMPK regulation of SIRT1 plays a critical role in electroacupuncture's antinociceptive effect through the promotion of M2 macrophage/microglial polarization.
Collapse
Affiliation(s)
- Fu-Bei Nan
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Yi-Xiao Gu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Jun-Lu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Shuang-Dong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| |
Collapse
|
2
|
Nikoohemmat M, Farmani D, Moteshakereh SM, Salehi S, Rezaee L, Haghparast A. Intra-accumbal orexinergic system contributes to the stress-induced antinociceptive behaviors in the animal model of acute pain in rats. Behav Pharmacol 2024; 35:92-102. [PMID: 38055726 DOI: 10.1097/fbp.0000000000000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Stress and pain are interleaved at numerous levels - influencing each other. Stress can increase the nociception threshold in animals, long-known as stress-induced analgesia (SIA). Orexin is known as a neuropeptide that modulates pain. The effect of stress on the mesolimbic system in the modulation of pain is known. The role of the intra-accumbal orexin receptors in the modulation of acute pain by forced swim stress (FSS) is unclear. In this study, 117 adult male albino Wistar rats (270-300 g) were used. The animals were unilaterally implanted with cannulae above the NAc. The antagonist of the orexin-1 receptor (OX1r), SB334867, and antagonist of the orexin-2 receptor (OX2r), TCS OX2 29, were microinjected into the NAc in different doses (1, 3, 10, and 30 nmol/0.5 µl DMSO) before exposure to FSS for a 6-min period. The tail-flick test was carried out as an assay nociception of acute pain, and the nociceptive threshold [tail-flick latency (TFL)] was measured for 60-minute. The findings demonstrated that exposure to acute stress could remarkably increase the TFLs and antinociceptive responses. Moreover, intra-accumbal microinjection of SB334867 or TCS OX2 29 blocked the antinociceptive effect of stress in the tail-flick test. The contribution of orexin receptors was almost equally modulating SIA. The present study's findings suggest that OX1r and OX2r within the NAc modulate stress-induced antinociceptive responses. The intra-accumbal microinjection of orexin receptors antagonists declares inducing antinociceptive responses by FSS in acute pain. Proposedly, intra-accumbla orexinergic receptors have a role in the development of SIA.
Collapse
Affiliation(s)
- Mohammad Nikoohemmat
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
| | - Danial Farmani
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
| | | | - Sakineh Salehi
- Department of Medicine, Ardabil Medical Sciences Branch, Islamic Azad University, Ardabil, Iran
| | - Laleh Rezaee
- Institute of Pathophysiology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
| |
Collapse
|
3
|
Wang J, Li Z, Tu Y, Gao F. The Dopaminergic System in the Ventral Tegmental Area Contributes to Morphine Analgesia and Tolerance. Neuroscience 2023; 527:74-83. [PMID: 37286162 DOI: 10.1016/j.neuroscience.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
Morphine has a strong analgesic effect and is suitable for various types of pain, so it is widely used. But long-term usage of morphine can lead to drug tolerance, which limits its clinical application. The complex mechanisms underlying the development of morphine analgesia into tolerance involve multiple nuclei in the brain. Recent studies reveal the signaling at the cellular and molecular levels as well as neural circuits contributing to morphine analgesia and tolerance in the ventral tegmental area (VTA), which is traditionally considered a critical center of opioid reward and addiction. Existing studies show that dopamine receptors and μ-opioid receptors participate in morphine tolerance through the altered activities of dopaminergic and/or non-dopaminergic neurons in the VTA. Several neural circuits related to the VTA are also involved in the regulation of morphine analgesia and the development of drug tolerance. Reviewing specific cellular and molecular targets and related neural circuits may provide novel precautionary strategies for morphine tolerance.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Tu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Modaberi S, Amirteymori H, Mesgar S, Eskandari K, Haghparast A. The blockade of orexin receptors within the dentate gyrus of the hippocampus attenuated methamphetamine-induced reward learning during conditioning place preference. Pharmacol Biochem Behav 2023; 226:173559. [PMID: 37100179 DOI: 10.1016/j.pbb.2023.173559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Orexins and orexinergic receptors have been shown to play a critical role in reward processing and drug addiction. Previous studies showed that the orexinergic system in the dentate gyrus (DG) region of the hippocampus affects the conditioning (acquisition) and post-conditioning (expression) phases of morphine-induced conditioned place preference (CPP). The action of each orexin receptor within the DG during conditioning and expression phases for methamphetamine (METH)-induced CPP remains unclear. The present study aimed to determine the role of orexin-1 and -2 receptors in the hippocampal DG in METH CPP acquisition and expression. During the 5-day conditioning phase, rats received an intra-DG microinjection of SB334867, a selective orexin-1 receptor (OX1R) antagonist, or TCS OX2-29, a selective orexin-2 receptor (OX2R) antagonist, before injection of METH (1 mg/kg; sc). In different sets of animals on the expression day, rats received each antagonist before the CPP test. The results showed that SB334867 (3, 10, and 30 nmol) and TCS OX2-29 (3, 10, and 30 nmol) significantly decreased the acquisition of METH CPP during the conditioning phase. Furthermore, administration of SB 334867 (10 and 30 nmol) and TCS OX2-29 (3 and 10 nmol) on the post-conditioning day significantly reduced METH-induced CPP expression. The results also indicated that orexin receptors play a more critical role in the conditioning phase than in the expression phase. In summary, the orexin receptors in the DG play a crucial role in drug learning and memory and are essential for METH reward acquisition and expression.
Collapse
Affiliation(s)
- Shaghayegh Modaberi
- Department of Sport Sciences, Faculty of Social Sciences, Imam Khomeini International University, Qazvin, Iran
| | - Haleh Amirteymori
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somaye Mesgar
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Moteshakereh SM, Nikoohemmat M, Farmani D, Khosrowabadi E, Salehi S, Haghparast A. The stress-induced antinociceptive responses to the persistent inflammatory pain involve the orexin receptors in the nucleus accumbens. Neuropeptides 2023; 98:102323. [PMID: 36736068 DOI: 10.1016/j.npep.2023.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Stress suppresses the sense of pain, a physiological phenomenon known as stress-induced analgesia (SIA). Brain orexin peptides regulate many physiological functions, including wakefulness and nociception. The contribution of the orexinergic system within the nucleus accumbens (NAc) in the modulation of antinociception induced by forced swim stress (FSS) remains unclear. The present study addressed the role of intra-accumbal orexin receptors in the antinociceptive responses induced by FSS during the persistent inflammatory pain model in the rat. Stereotaxic surgery was performed unilaterally on 106 adult male Wistar rats weighing 250-305 g. Different doses (1, 3, 10, and 30 nmol/ 0.5 μl DMSO) of orexin-1 receptor (OX1r) antagonist (SB334867) or OX2 receptor antagonist (TCS OX2 29) were administered into the NAc five minutes before exposure to FSS for a 6-min period. The formalin test was carried out using formalin injection (50 μl; 2.5%) into the rat's hind paw plantar surface, which induces biphasic pain-related responses. The first phase begins immediately after formalin infusion and takes 3-5 min. Subsequently, the late phase begins 15-20 min after formalin injection and takes 20-40 min. The findings demonstrated that intra-accumbal microinjection of SB334867 or TCS OX2 29 attenuated the FSS-induced antinociception in both phases of the formalin test, with the TCS OX2 29 showing higher potency. Moreover, the effect of TCS OX2 29 was more significant during the early phase of the formalin test. The results suggest that OX1 and OX2 receptors in the NAc might modulate the antinociceptive responses induced by the FSS.
Collapse
Affiliation(s)
| | - Mohammad Nikoohemmat
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Danial Farmani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Khosrowabadi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Salehi
- epartment of Medicine, Ardabil Medical Sciences Branch, Islamic Azad University, Ardabil, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Kaneko T, Kuwaki T. The opposite roles of orexin neurons in pain and itch neural processing. Peptides 2023; 160:170928. [PMID: 36566840 DOI: 10.1016/j.peptides.2022.170928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Pain and itch are antagonistically regulated sensations; pain suppresses itch, and inhibition of pain enhances itch. Understanding the central neural circuit of antagonistic regulation between pain and itch is required to develop new therapeutics better to manage these two feelings in a clinical situation. However, evidence of the neural mechanism underlying the pain-itch interaction in the central nervous system (CNS) is still insufficient. To pave the way for this research area, our laboratory has focused on orexin (ORX) producing neurons in the hypothalamus, which is known as a master switch that induces various defense responses when animals face a stressful environment. This review article summarized the previous evidence and our latest findings to argue the neural regulation between pain and itch and the bidirectional roles of ORX neurons in processing these two sensations. i.e., pain relief and itch exacerbation. Further, we discussed the possible neural circuit mechanism for the opposite controlling of pain and itch by ORX neurons. Focusing on the roles of ORX neurons would provide a new perspective to understand the antagonistic regulation of pain and itch in CNS.
Collapse
Affiliation(s)
- Tatsuroh Kaneko
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
7
|
Blockade of the orexin receptors in the ventral tegmental area could attenuate the stress-induced analgesia: A behavioral and molecular study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110639. [PMID: 36116673 DOI: 10.1016/j.pnpbp.2022.110639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Exposure to stressful stimuli induces various physiological and behavioral responses, affects pain perception, and alters gene expression. Stress elicits an analgesic effect in laboratory animals, termed the "stress-induced analgesia" (SIA). Orexin neuropeptides, processed from pre-pro-orexin in the hypothalamus, release during stress and are known to be antinociceptive. The current study examined the modulatory role of the ventral tegmental area (VTA) orexinergic system in the restraint SIA and extracellular signal-regulated kinase (ERK) activation in the nucleus accumbens (NAc). Adult male Wistar rats were subjected to intra-VTA injection of orexin-1 and -2 receptor antagonists (SB334867 and TCS OX2 29; 1, 3, 10, and 30 nmol/0.3 μl, respectively) five min before a 3-h period of exposure to restraint stress (RS). Western blot analysis was also used to assess the levels of ERK and phosphorylated ERK (p-ERK) in the NAc tissues. RS exposure produced an analgesic response to the thermal pain model (Tail-flick test). RS-induced antinociception was inhibited by intra-VTA administration of SB334867 and TCS OX2 29. Moreover, in the molecular study, exposure to forced swim stress (FSS) and RS significantly enhanced the p-ERK/ERK ratio. Blockade of both orexin receptors diminished the p-ERK/ERK ratio, but this decrease was significant only in the FSS group of animals that received TCS OX2 29. Collectively, the present findings suggested the functional roles of intra-VTA orexin receptors and ERK signaling in the SIA.
Collapse
|
8
|
Shakerinava P, Sayarnezhad A, Karimi-Haghighi S, Mesgar S, Haghparast A. Antagonism of the orexin receptors in the ventral tegmental area diminished the stress-induced analgesia in persistent inflammatory pain. Neuropeptides 2022; 96:102291. [PMID: 36155089 DOI: 10.1016/j.npep.2022.102291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
As a part of descending pain inhibitory system, orexin (OXs) in the ventral tegmental area (VTA) are implicated in nociceptive responses. The current study aimed to evaluate the role of OX receptors (OXRs) in the VTA in stress-induced analgesia in persistent inflammatory pain. Ninety-nine adult male Wistar rats underwent forced swim stress (FSS) following intra-VTA infusion of various doses of SB334867 or TCS OX2 29 (1, 3, 10, and 30 nmol/0.3 μL) as an OX1R or OX2R antagonist, respectively. The nociceptive threshold was evaluated using the formalin test as an animal model of persistent inflammatory pain. Current results demonstrated FSS as acute stress produced analgesic responses in the persistent inflammatory pain. Moreover, either OX1R or OX2R antagonist infusion in the VTA hindered the FSS-induced analgesia in both early and late phases. The inhibitory effect of SB334768 in the FSS-induced analgesia was stronger than TCS OX2 29 in both early and late phases of the formalin test. Neither SB334768 nor TCS OX2 29 alone affects pain-related behaviors in formalin tests. Intra-VTA microinjection of each treatment could not modify locomotion in rats. The findings suggest that OX1R and OX2R in the VTA are implicated in FSS-induced analgesia mechanisms.
Collapse
Affiliation(s)
- Pedram Shakerinava
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Sayarnezhad
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Community Based Psychiatric Care Research Center, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somaye Mesgar
- Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Pourreza P, Haghparast A, Sadeghi M, Nazari-Serenjeh F, Askari K, Haghparast A. Orexin-2 receptor antagonism in the cornu ammonis 1 region of hippocampus prevented the antinociceptive responses induced by chemical stimulation of the lateral hypothalamus in the animal model of persistent pain. Behav Pharmacol 2021; 32:515-523. [PMID: 34320521 DOI: 10.1097/fbp.0000000000000646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Orexins are excitatory neuropeptides, mainly produced by neurons located in the lateral hypothalamus, which project to many brain areas. The orexinergic system plays a fundamental role in arousal, sleep/wakefulness, feeding, energy homeostasis, motivation, reward, stress and pain modulation. As a prominent part of the limbic system, the hippocampus has been involved in formalin-induced nociception modulation. Moreover, hippocampus regions express both orexin-1 (OX1) and orexin-2 (OX2) receptors. The present study investigated the role of OX2 receptors (OX2R) within the cornu ammonis 1 (CA1) region of the hippocampus in the mediation of lateral hypothalamus-induced antinociception. Fifty-three male Wistar rats were unilaterally implanted with two separate cannulae into the lateral hypothalamus and CA1. Animals were pretreated with intra-CA1 TCS OX2 29 as an OX2R antagonist before intra-lateral hypothalamus administration of carbachol (250 nM) as a muscarinic agonist for chemical stimulation of orexinergic neurons. Formalin test was used as an animal model of persistent pain, following intra-lateral hypothalamus carbachol microinjection. Results showed that the chemical stimulation of the lateral hypothalamus significantly attenuated formalin-evoked nociceptive behaviors during both phases of the formalin test, and administration of TCS OX2 29 into the CA1 blocked these antinociceptive responses in both phases, especially in the late phase. These findings suggest that OX2 receptors in the CA1 partially mediate the lateral hypothalamus-induced antinociceptive responses in persistent inflammatory pain.
Collapse
Affiliation(s)
- Pooya Pourreza
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad university
| | - Amir Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran
| | - Mehdi Sadeghi
- Department of Physiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr
| | | | - Kobra Askari
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran
| |
Collapse
|
10
|
Askari K, Oryan S, Eidi A, Zaringhalam J, Haghparast A. Modulatory role of the orexin system in stress-induced analgesia: Involvement of the ventral tegmental area. Eur J Pain 2021; 25:2266-2277. [PMID: 34288265 DOI: 10.1002/ejp.1840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/17/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Exposure to stressful experiences is often accompanied by suppressing pain perception, referred to as stress-induced analgesia. The neuropeptides orexins are essential in regulating the mechanism that responds to stressful and painful stimuli. Meanwhile, the ventral tegmental area (VTA), as a part of descending pain inhibitory system, responds to noxious stimuli. This study aimed to investigate the role of intra-VTA administration of orexin receptor antagonists on stress-induced antinociceptive responses in the animal model of acute pain. METHOD Ninety-three adult Wistar rats weighing 230-250 g were unilaterally implanted by a cannulae above the VTA. Animals were pretreated with different doses (1, 3, 10 and 30 nM/0.3 μl) of SB334867 as the orexin-1 receptor antagonist and TCS OX2 29 as the orexin-2 receptor antagonist into the VTA, just 5 min before 6 min exposure to forced swim stress (FSS). Nociceptive threshold was measured using the tail-flick test as a model of acute pain. RESULTS The results showed that exposure to FSS could significantly increase analgesic responses. Moreover, intra-VTA administration of SB334768 and TCS OX2 29 blocked the antinociceptive effect of FSS in the tail-flick test. CONCLUSION The findings suggest that OX1 and OX2 receptors in the VTA might modulate the antinociceptive behaviours induced by FSS in part. SIGNIFICANCE Acute exposure to physical stress suppresses pain-related behaviors in the animal model of acute pain. Blockade of the OX1 and OX2 receptors in the VTA attenuates antinociceptive responses induced by FSS. The contribution of the OX2 receptors in the VTA is more predominant than OX1 receptors in stress-induced analgesia.
Collapse
Affiliation(s)
- Kobra Askari
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shahrbanoo Oryan
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jalal Zaringhalam
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Torkamand F, Aghakhani-Lobnani AM, Khaleghzadeh-Ahangar H, Rashvand M, Rahban M, Haghparast A. The role of dentate gyrus dopaminergic receptors in the lateral hypothalamic-induced antinociception during persistent inflammatory pain in male rats. Behav Brain Res 2021; 412:113434. [PMID: 34175356 DOI: 10.1016/j.bbr.2021.113434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/29/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022]
Abstract
The lateral hypothalamus (LH) is one of the key brain areas involved in pain modulation. Also, the dentate gyrus (DG) of the hippocampus expresses various receptors, including dopaminergic receptors. Dopaminergic receptors play a key role in pain transmission and modulation within the brain. The present study aimed to investigate the involvement of DG dopaminergic receptors in the LH-induced antinociception during the presence of inflammatory pain. Male Wistar rats were used in this study. Cannulae were unilaterally implanted in their skull for microinjections into the LH and DG. The LH was chemically stimulated by carbachol injection (250 nM/0.5 μl saline). In separate groups, different doses (0.25, 1, and 4 μg/0.5 μl vehicle) of the D1- and D2-like dopamine receptor antagonists (SCH23390 and Sulpiride, respectively) were microinjected into the DG, 5 min prior to intra-LH injection of carbachol. Five min after the second injection, formalin test as a persistent inflammatory pain model in animals was done in all rats. The results revealed that carbachol could induce antinociception following formalin injection into rat's hind paw. The 4 μg dose of both antagonists significantly reduced the LH stimulation-induced antinociception in both phases of formalin pain responses. Although the 1 μg dose of sulpiride significantly reduced antinociception during both phases, 1 μg SCH23390 could only reduce this antinociception during the late phase. These findings demonstrate the involvement of DG dopaminergic receptors in the LH-induced antinociception. The results also suggest that the effectiveness of DG dopaminergic receptors is more pronounced during the late phase of formalin-induced pain responses.
Collapse
Affiliation(s)
- Farbod Torkamand
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Khaleghzadeh-Ahangar
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mina Rashvand
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahban
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Khaleghzadeh-Ahangar H, Rashvand M, Haghparast A. Role of D1- and D2-like dopamine receptors within the dentate gyrus in antinociception induced by chemical stimulation of the lateral hypothalamus in an animal model of acute pain. Physiol Behav 2021; 229:113214. [DOI: 10.1016/j.physbeh.2020.113214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022]
|
13
|
Faramarzi G, Charmchi E, Salehi S, Zendehdel M, Haghparast A. Intra-accumbal dopaminergic system modulates the restraint stress-induced antinociceptive behaviours in persistent inflammatory pain. Eur J Pain 2021; 25:862-871. [PMID: 33342008 DOI: 10.1002/ejp.1716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/13/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Stress activates several neural pathways that inhibit pain sensation. Nucleus accumbens (NAc), as an important component of the mesolimbic dopaminergic system, has a major role in pain modulation and is differentially affected by stress. Based on the nature of stressors, the direction of this effect is controversial. We previously showed that forced swim stress-induced analgesia through activation of NAc dopamine receptors. In this study, we aimed to examine the role of dopamine receptors within the NAc in restraint stress (RS)-induced analgesia. METHODS Male Wistar rats weighing 230-250 g were unilaterally implanted with a cannula into the NAc. D1-like dopamine receptor antagonist, SCH-23390 (0.25, 1 and 4 µg/0.5 µL saline), or D2-like dopamine receptor antagonist, Sulpiride (0.25, 1 and 4µg/0.5µl DMSO), were microinjected into NAc in two separate super groups 5 min prior to exposure to RS. Their control groups just received intra-accumbal saline or DMSO (0.5 µl) respectively. The formalin test was performed after animals were subjected to RS using Plexiglas tubes. RESULTS The results demonstrated that RS produces analgesia in both phases of the formalin test. Intra-NAc injection of SCH-23390 equally reduced RS-induced analgesia in both early and late phases of the formalin test, while Sulpiride reduced RS-induced analgesia just at the late phase. CONCLUSIONS These findings suggest that the dopaminergic system might act as a potential endogenous pain control system in stress conditions. However, the lack of evaluation of the role of the dopaminergic system in RS-induced antinociception in acute pain conditions is considered as a limitation for this study. In addition, a comprehensive evaluation of this endogenous pain control system in animal and clinical studies will guide future efforts for developing more effective medication. SIGNIFICANCE Restraint stress (RS) induces the antinociceptive behaviors in both phases of formalin test. Blockade of intra-accumbal dopamine receptors impresses the antinociception induced by RS. Blockade of D1-like dopamine receptor equally reduced RS-induced analgesia in both early and late phases of the formalin test. Blockade of D2-like dopamine receptor reduced RS-induced analgesia just at the late phase.
Collapse
Affiliation(s)
- Golnaz Faramarzi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Elham Charmchi
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sakineh Salehi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medicine, Ardabil Medical Sciences Branch, Islamic Azad University, Ardabil, Iran
| | - Morteza Zendehdel
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Tilahun A, Seifu A, Aregawi A, Abera B, Demsie D. Effectiveness of meperidine versus tramadol on post spinal anesthesia shivering in elective cesarean section: A prospective observational cohort study. INTERNATIONAL JOURNAL OF SURGERY OPEN 2021. [DOI: 10.1016/j.ijso.2020.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Electroacupuncture Attenuates CFA-Induced Inflammatory Pain by Regulating CaMKII. Neural Plast 2020; 2020:8861994. [PMID: 33488694 PMCID: PMC7790579 DOI: 10.1155/2020/8861994] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/05/2020] [Accepted: 12/17/2020] [Indexed: 01/17/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinase that is ubiquitously distributed in the central and peripheral nervous systems. Moreover, its phosphorylated protein (P-CaMKII) is involved in memory, mood, and pain regulation in the anterior cingulate cortex (ACC). Electroacupuncture (EA) is a traditional Chinese therapeutic technique that can effectively treat chronic inflammatory pain. However, the CaMKII-GluA1 role in EA analgesia in the ACC remains unclear. This study investigated the role of P-CaMKII and P-GluA1 in a mouse model of inflammatory pain induced by complete Freund's adjuvant (CFA). There were increased P-CaMKII and P-GluA1 levels in the ACC. We found that intracerebroventricular injection of KN93, a CaMKII inhibitor, as well as EA stimulation, attenuated complete Freund's adjuvant-induced pain behavior. Further, EA increased pCaMKII-PICK1 complex (abbreviated as C-P complex) levels. Our findings demonstrate that EA inhibits inflammatory pain by inhibiting CaMKII-GluA1 phosphorylation. P-CaMKII is involved in EA analgesia as the pCaMKII-PICK1 complex.
Collapse
|
16
|
Rasouli B, Rashvand M, Mousavi Z, Haghparast A. Role of orexin receptors within the dentate gyrus in antinociception induced by chemical stimulation of the lateral hypothalamus in an animal model of inflammatory pain. Peptides 2020; 134:170401. [PMID: 32891686 DOI: 10.1016/j.peptides.2020.170401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022]
Abstract
Pain is a complex experience consisting of sensory, affective-motivational, and cognitive dimensions. Hence, identifying the multiple neural pathways subserving these functional aspects is a valuable task. The role of dentate gyrus (DG) as a relay station of neocortical afferents in the hippocampal formation (HF) in persistent pain is still controversial. The lateral hypothalamus (LH)-HF neural circuits are involved in numerous situations such as anxiety-like behavior, reward processing, feeding, orofacial as well as acute pain. Nonetheless, to our knowledge, the involvement of the LH-DG neural circuit in persistent pain has already remained unexplored. Adult male Wistar rats weighing 220-250 g were undergone stereotaxic surgery for unilateral implantation of two separate cannulae into the LH and DG. Intra-DG administration of the orexin-1 (OX1) and orexin-2 (OX2) receptor antagonists, SB334867 and TCS OX2 29, respectively, was performed 5 min before intra-LH microinjection of carbachol. Animals were then undergone the formalin test using 50 μl formalin injection (2.5%) into the plantar surface of the hind paw. Microinjection of SB334867 or TCS OX2 29 into the DG region attenuated the antinociceptive effect produced by carbachol microinjection into the LH. The preventive effect of SB334867 and TCS OX2 29 on intra-LH carbachol-induced antinociception was approximately equal in both early and late phases of formalin nociception. The results suggest a neural pathway from the LH to the DG, which contributes to the modulation of formalin-induced inflammatory pain through the recruitment of OX1 and OX2 receptors within the DG.
Collapse
Affiliation(s)
- Behnaz Rasouli
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Rashvand
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mousavi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Ahmadi-Soleimani SM, Mianbandi V, Azizi H, Azhdari-Zarmehri H, Ghaemi-Jandabi M, Abbasi-Mazar A, Mohajer Y, Darana SP. Coregulation of sleep-pain physiological interplay by orexin system: An unprecedented review. Behav Brain Res 2020; 391:112650. [DOI: 10.1016/j.bbr.2020.112650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
|
18
|
Matini T, Haghparast A, Rezaee L, Salehi S, Tehranchi A, Haghparast A. Role of Dopaminergic Receptors Within the Ventral Tegmental Area in Antinociception Induced by Chemical Stimulation of the Lateral Hypothalamus in an Animal Model of Orofacial Pain. J Pain Res 2020; 13:1449-1460. [PMID: 32606911 PMCID: PMC7304680 DOI: 10.2147/jpr.s255250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction The ventral tegmental area (VTA), as one of the classical components of the brain reward circuitry, shares large neural networks with the pain processing system. We previously showed the role of VTA dopamine receptors in modulation of lateral hypothalamus (LH)-induced antinociception in acute pain conditions. However, considering the fact that the neural systems involved in the mediation of tonic pain are not the same as those that mediate phasic pain. In the present study, we aimed to examine the role of intra-VTA dopamine receptors in LH-induced antinociceptive responses during tonic orofacial pain conditions. Methods Male Wistar rats weighing 230-250 g were implanted with two separate cannulae into the LH and VTA on the same side. Different solutions of carbachol (62.5, 125 and 250 nM), as a non-selective cholinergic receptor agonist that activates the LH projecting neurons, were microinjected into the LH. In the other groups, D1-like dopamine receptor antagonist, SCH-23390 (0.25, 1 and 4 µg/03 µL saline) or D2-like dopamine receptor antagonist, Sulpiride (0.25, 1 and 4 µg/0.3 µL DMSO 12%) were microinjected into VTA, 5 min prior intra-LH carbachol (250 nM), then subjected to orofacial formalin test. Intra-LH carbachol microinjection dose-dependently attenuated biphasic orofacial pain. Results Intra-VTA administration of SCH-23390 or Sulpiride dose-dependently decreased intra-LH carbachol-induced antinociception during both phases of orofacial formalin test with further effects in the late phase. Discussion The findings suggest that chemical stimulation of the LH by carbachol possibly activates the orexin projecting neurons and subsequently, the VTA dopaminergic neurons involved in the orofacial pain modulation. Detecting such neural circuitry offers an alternative approach in the development of more efficient therapies for such debilitating pain conditions.
Collapse
Affiliation(s)
- Tina Matini
- School of Dentistry, International Branch of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Haghparast
- School of Dentistry, International Branch of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laleh Rezaee
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Salehi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medicine, Ardabil Medical Sciences Branch, Islamic Azad University, Ardabil, Iran
| | - Azita Tehranchi
- Dental Research Center, Research Institute of Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Salehi S, Kashfi K, Manaheji H, Haghparast A. Chemical stimulation of the lateral hypothalamus induces antiallodynic and anti-thermal hyperalgesic effects in animal model of neuropathic pain: Involvement of orexin receptors in the spinal cord. Brain Res 2020; 1732:146674. [DOI: 10.1016/j.brainres.2020.146674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/14/2019] [Accepted: 01/17/2020] [Indexed: 01/06/2023]
|
20
|
Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N. The Lateral Hypothalamus: An Uncharted Territory for Processing Peripheral Neurogenic Inflammation. Front Neurosci 2020; 14:101. [PMID: 32116534 PMCID: PMC7029733 DOI: 10.3389/fnins.2020.00101] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
The roles of the hypothalamus and particularly the lateral hypothalamus (LH) in the regulation of inflammation and pain have been widely studied. The LH consists of a parasympathetic area that has connections with all the major parts of the brain. It controls the autonomic nervous system (ANS), regulates feeding behavior and wakeful cycles, and is a part of the reward system. In addition, it contains different types of neurons, most importantly the orexin neurons. These neurons, though few in number, perform critical functions such as inhibiting pain transmission and interfering with the reward system, feeding behavior and the hypothalamic pituitary axis (HPA). Recent evidence has identified a new role for orexin neurons in the modulation of pain transmission associated with several inflammatory diseases, including rheumatoid arthritis and ulcerative colitis. Here, we review recent findings on the various physiological functions of the LH with special emphasis on the orexin/receptor system and its role in mediating inflammatory pain.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Israa Salman
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Najjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - George Merhej
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
21
|
Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020; 167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Hypocretin/orexin neurons are distributed restrictively in the hypothalamus, a brain region known to orchestrate diverse functions including sleep, reward processing, food intake, thermogenesis, and mood. Since the hypocretins/orexins were discovered more than two decades ago, extensive studies have accumulated concrete evidence showing the pivotal role of hypocretin/orexin in diverse neural modulation. New method of viral-mediated tracing system offers the possibility to map the monosynaptic inputs and detailed anatomical connectivity of Hcrt neurons. With the development of powerful research techniques including optogenetics, fiber-photometry, cell-type/pathway specific manipulation and neuronal activity monitoring, as well as single-cell RNA sequencing, the details of how hypocretinergic system execute functional modulation of various behaviors are coming to light. In this review, we focus on the function of neural pathways from hypocretin neurons to target brain regions. Anatomical and functional inputs to hypocretin neurons are also discussed. We further briefly summarize the development of pharmaceutical compounds targeting hypocretin signaling. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
22
|
The contribution of orexin receptors within the ventral tegmental area to modulation of antinociception induced by chemical stimulation of the lateral hypothalamus in the animal model of orofacial pain in the rats. Behav Pharmacol 2019; 31:500-509. [DOI: 10.1097/fbp.0000000000000531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Brojeni MS, Rashvand M, Haghparast A. Role of orexin receptors within the dentate gyrus of the hippocampus in antinociception induced by chemical stimulation of the lateral hypothalamus in the tail-flick test as a model of acute pain in rats. Physiol Behav 2019; 209:112595. [DOI: 10.1016/j.physbeh.2019.112595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 01/11/2023]
|
24
|
Kami K, Tajima F, Senba E. Activation of mesolimbic reward system via laterodorsal tegmental nucleus and hypothalamus in exercise-induced hypoalgesia. Sci Rep 2018; 8:11540. [PMID: 30069057 PMCID: PMC6070570 DOI: 10.1038/s41598-018-29915-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/20/2018] [Indexed: 11/08/2022] Open
Abstract
Ventral tegmental area (VTA) dopamine (DA) neurons are the primary source of dopamine in target structures that constitute the mesolimbic reward system. Previous studies demonstrated that voluntary wheel running (VWR) by neuropathic pain (NPP) model mice produces exercise-induced hypoalgesia (EIH), and that activation of mesolimbic reward system may lead to EIH. However, the neuronal mechanism by which the mesolimbic reward system is activated by VWR is unknown. Here, we found that VWR produces EIH effects and reverses the marked reduction in activated lateral VTA (lVTA)-DA neurons induced by NPP. The proportions of activated laterodorsal tegmental nucleus (LDT)-cholinergic and lateral hypothalamus-orexin neurons were significantly enhanced by VWR. Retrograde tracing and dual immunostaining revealed that VWR activates lVTA-projecting LDT-cholinergic/non-cholinergic and lateral hypothalamic area (LHA)-orexin/non-orexin neurons. Therefore, EIH effects may be produced, at least in part, by activation of the mesolimbic reward system via activation of LDT and LHA neurons.
Collapse
Affiliation(s)
- Katsuya Kami
- Department of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-8509, Japan.
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
| | - Emiko Senba
- Department of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
- Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Sojiji, Ibaraki City, Osaka, 567-0801, Japan
| |
Collapse
|
25
|
Rezaee L, Karimi-Haghighi S, Fazli-Tabaei S, Haghparast A. Effects of intrathecal administration of orexin-1 receptor antagonist on antinociceptive responses induced by chemical stimulation of lateral hypothalamus in an animal model of tonic nociception. Neuropeptides 2018; 69:19-25. [PMID: 29735274 DOI: 10.1016/j.npep.2018.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/20/2018] [Accepted: 03/31/2018] [Indexed: 11/25/2022]
Abstract
Orexins are produced in the restricted regions of the lateral hypothalamus (LH). However, orexinergic receptors and projections are localized in wide regions like nucleus accumbens, ventral tegmental area, periaqueductal gray area and spinal cord which are involved in the pain modulation. This study was carried out to investigate the effects of intrathecal administration of orexin-1 receptor antagonist (SB-334867) in the spinal antinociception induced by intra-LH administration of carbachol (cholinergic receptor agonist) in both early and late phases of pain related behaviors in formalin test. In this study, pain-related behaviors (pain scores) were evaluated using the formalin test during 5-min block intervals for a 60-min period in seventy male Wistar rats were given SB-334867 (3, 10, 30 and 100 μM/10 μl) or vehicle (DMSO 12%; 10 μl) intrathecally following intra-LH administration of carbachol (250 nM/rat). Our data showed that intra-LH injection of carbachol attenuated the formalin-induced biphasic pain responses, and intrathecal administration of SB-334867 dose-dependently decreased LH stimulation-induced antinociceptive responses during both phases. Moreover, administration of different doses of SB-334867 during the early phase were more effective than those during the late phase. The antinociceptive role of orexinergic system in the formalin test through a neural pathway from the LH to the spinal cord provides evidence that orexins can be useful in therapeutic targets for pain relief.
Collapse
Affiliation(s)
- Laleh Rezaee
- Department of Physiology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Fazli-Tabaei
- Department of Physiology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Shafiei I, Vatankhah M, Zarepour L, Ezzatpanah S, Haghparast A. Role of D1- and D2-like dopaminergic receptors in the nucleus accumbens in modulation of formalin-induced orofacial pain: Involvement of lateral hypothalamus. Physiol Behav 2018; 188:25-31. [DOI: 10.1016/j.physbeh.2018.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 11/16/2022]
|
27
|
Pourreza P, Babapour V, Haghparast A. Role of dorsal hippocampal orexin-1 receptors in modulation of antinociception induced by chemical stimulation of the lateral hypothalamus. Physiol Behav 2018; 185:79-86. [DOI: 10.1016/j.physbeh.2017.12.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 11/29/2022]
|
28
|
Haghparast A, Shafiei I, Alizadeh AM, Ezzatpanah S, Haghparast A. Blockade of the orexin receptors in the CA1 region of hippocampus decreased the lateral hypothalamic-induced antinociceptive responses in the model of orofacial formalin test in the rats. Peptides 2018; 99:217-222. [PMID: 29042271 DOI: 10.1016/j.peptides.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 12/30/2022]
Abstract
The role of hippocampus and lateral hypothalamus (LH) in modulation of formalin-induced nociception has been established. The present study aims to examine the role of orexin receptors in the Cornu Ammonis 1 (CA1) region of hippocampus in modulation of the LH-induced antinociception in the orofacial formalin test. Male Wistar rats were unilaterally implanted with two cannulae into the LH and CA1. Intra-LH microinjection of carbachol was done 5min after intra-CA1 administration of SB-334867 (OX1R antagonist) or TCS OX2 29 (OX2R antagonist). After 5min, 50μl of 1% formalin was subcutaneously injected into the upper lip for inducing the nociceptive behaviors. Solely intra-LH administration of carbachol reduced early and late phases of formalin-induced orofacial nociception in a dose-dependent manner. The antinociception evoked by intra-LH injection of carbachol (0.5μl of 250nM carbachol) was antagonized by intra-CA1 administration of 0.5μl of 3, 10 and 30nM solutions of SB-334867 or TCS OX2 29 during the early and late phases of orofacial formalin test. This effect was more remarkable during the late phase in comparison to the early phase. In addition, anti-analgesic effect of SB-334867 was more than TCS OX2 29 during the early and late phases. The results suggest the interpretation that a neural pathway from the LH to the CA1 probably contributes to the modulation of formalin-induced orofacial nociception through recruitment of both CA1 orexin receptors. Clinical studies are recommended to study the probable effectiveness of orexinergic system in modulation of the orofacial nociceptive responses.
Collapse
Affiliation(s)
- Amir Haghparast
- School of Dentistry, International Branch of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Shafiei
- Prosthetic Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Alizadeh
- Department of Neuroscience, Research Group Neurophysiology, KU Leuven, O&N II Herestraat 49, 3000, Leuven, Belgium
| | - Somayeh Ezzatpanah
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran.
| |
Collapse
|
29
|
Farahimanesh S, Zarrabian S, Haghparast A. Role of orexin receptors in the ventral tegmental area on acquisition and expression of morphine-induced conditioned place preference in the rats. Neuropeptides 2017; 66:45-51. [PMID: 28890208 DOI: 10.1016/j.npep.2017.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 08/25/2017] [Indexed: 01/28/2023]
Abstract
The orexins are hypothalamic neuropeptides and their role in reward processing and drug addiction has been demonstrated. The extent of involvement of each orexin receptor in the acquisition and expression of conditioned place preference (CPP) for morphine is still a matter of controversy. We investigated the functional differences between orexin-1 and -2 receptor blockade in the ventral tegmental area (VTA) on the acquisition and expression of morphine CPP. A total of 86 adult male Wistar rats weighing 250±30g (age 7-8weeks) received intra-VTA microinjection of either SB334867 (0.1, 1 and 10nM), a selective orexin-1 receptor (OX1R) antagonist, or TCS-OX2-29 (1, 5 and 25nM), a selective orexin-2 receptor (OX2R) antagonist. To measure the acquisition, the animals received each antagonist (SB334867 or TCS-OX2-29) 5min prior to subcutaneous injection of morphine (5mg/kg) during the conditioning phase. To measure the CPP expression, the animals received each antagonist on the post-conditioning phase. The CPP conditioning score was recorded by Ethovision software. Data showed that intra-VTA microinjection of OX1-R antagonist significantly attenuated morphine CPP acquisition, during the conditioning phase, and expression, during the post-conditioning phase. Intra-VTA microinjection of OX2-R antagonist also significantly attenuated morphine CPP acquisition and expression in the mentioned phases. Our results showed the orexin role in learning and memory and indicate that orexin receptors (OX1R and OX2R) function in the VTA is essential for both acquisition and expression of morphine reward in rats in the CPP model.
Collapse
Affiliation(s)
- Sharareh Farahimanesh
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute for cognitive Science Studies, Tehran, Iran
| | - Shahram Zarrabian
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Role of intra-accumbal orexin receptors in the acquisition of morphine-induced conditioned place preference in the rats. Neurosci Lett 2017; 660:1-5. [PMID: 28889006 DOI: 10.1016/j.neulet.2017.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022]
Abstract
Orexin receptor shave essential role in the induction of reward-related behaviors to several drugs of abuse. In the present study, we investigated the effects of bilateral administration of SB334867, as an orexin-1 receptor antagonist, and TCS OX2 29, as an orexin-2 receptor antagonist, into the nucleus accumbens (NAc) on the acquisition of morphine-induced conditioned place preference (CPP) in the rats. Adult male Wistar rats (n=80; 220-250g) were entered in a CPP paradigm. Bilateral microinjections of different doses of SB334867 (1, 3, 10 and 30nM) or TCS OX2 29 (3, 10, 30 and 100nM) into the NAc (0.5μl/side) were done 5min before subcutaneous injection of morphine (5mg/kg) during 3-dayconditioning (acquisition) phase. The CPP scores and locomotor activity of animals were recorded by video tracking system and Ethovision software. The results demonstrated that intra-NAc microinjection of 3, 10 and 30nM solutions of SB334867 markedly decreased the acquisition of morphine-induced CPP in a dose-dependent manner. Intra-accumbal injection of 10, 30 and 100nM solutions of TCS OX2 29 significantly attenuated the acquisition of morphine CPP as well. In addition, contribution of orexin-1 receptors to development of morphine reward-related behaviors was more than orexin-2 receptors. Our results suggest that both orexin-1 and -2 receptors in the NAc are involved in the development of morphine-induced CPP. It seems that orexin-1 receptors in this region are more effective in development of drug seeking behaviors in the rats.
Collapse
|
31
|
Siahposht-Khachaki A, Pourreza P, Ezzatpanah S, Haghparast A. Nucleus accumbens dopamine receptors mediate hypothalamus-induced antinociception in the rat formalin test. Eur J Pain 2017; 21:1285-1294. [DOI: 10.1002/ejp.1029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- A. Siahposht-Khachaki
- Department of Physiology and Pharmacology; Mazandaran University of Medical Sciences, Ramsar International Branch; Sari Iran
| | - P. Pourreza
- Neuroscience Research Center, School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - S. Ezzatpanah
- Neuroscience Research Center, School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - A. Haghparast
- Neuroscience Research Center, School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
32
|
Role of orexin-2 and CB1 receptors within the periaqueductal gray matter in lateral hypothalamic-induced antinociception in rats. Behav Pharmacol 2017; 28:83-89. [DOI: 10.1097/fbp.0000000000000277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|