1
|
Dey A, Roy K, Subba SH, Lee G, Park SY. MXene/polymer dot-decorated flexible sensor for cancer cell-responsive hydrogel with tunable elastic modulus, porosity, and conductivity. Talanta 2025; 281:126874. [PMID: 39277932 DOI: 10.1016/j.talanta.2024.126874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
This study reports a facile strategy for cancer cell modulated mechanically and electronically tunable hydrogel based on MXene-immobilized hyaluronic acid polymer dot (M-PD). Elevated levels of reactive oxygen species (ROS), such as H2O2 in cancer cells cleave MXene owing to the oxygen-titanium affinity of Ti3C2Tx, altering the physico-mechanical, electrochemical, and fluorescence (FL) properties of the sensor. The H2O2-induced cleavage of M-PD in the hydrogel causes the quenched FL intensity by the Forster resonance energy transfer effect (FRET) to recover, alongside an increase in pore size, influencing shifts in hydrogen bonding and inducing viscoelastic changes in the flexible sensor. This caused physico-mechanical alterations in the sensor, modified the viscosity (G' decreased by 98.7%), and enhanced the stretchability. Further, in vitro electrochemical impedance spectroscopy (EIS) highlighted the distinct results for cancer cells (B16F10: 8.10 kΩ, MDA-MB-231: 8.30 kΩ), and normal cells (CHO-K1: 3.40 kΩ), showcasing electrochemical differentiation between these cells. Additionally, the flexible M-PD hydrogel sensor exhibits high sensitivity, with detection limits of 2.58 cells/well (CHO-K1), 0.96 cells/well (B16F10), and 1.20 cells/well (MDA-MB-231). Finally, real-time cancer monitoring was achieved by integrating the M-PD hydrogel with a wireless setup on a smartphone.
Collapse
Affiliation(s)
- Anneshwa Dey
- Department of IT and Energy Convergence, (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Kaustuv Roy
- Department of IT and Energy Convergence, (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Sunu Hangma Subba
- Department of IT and Energy Convergence, (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Gibaek Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| | - Sung Young Park
- Department of IT and Energy Convergence, (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
2
|
Li S, Miao S, Chen M, Zhang Y, Li H, Xia F. Localized high probe density greatly improves the signaling stability of supramolecular electrochemical aptamer-based (Supra-EAB) sensors. Chem Commun (Camb) 2024; 61:274-277. [PMID: 39611223 DOI: 10.1039/d4cc05396f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
DNA aptamers have emerged as a promising class of probes for the development of biosensors. However, the only viable strategy thus far for adjustment of probe densities is tuning DNA concentrations. Herein, we constructed a class of Supra-EAB sensors to introduce localized high probe densities and achieved significantly improved stability against enzymes.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Ming Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yaqi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
3
|
Hu Z, Hu Y, Huang L, Zhong W, Zhang J, Lei D, Chen Y, Ni Y, Liu Y. Recent Progress in Organic Electrochemical Transistor-Structured Biosensors. BIOSENSORS 2024; 14:330. [PMID: 39056606 PMCID: PMC11274720 DOI: 10.3390/bios14070330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
The continued advancement of organic electronic technology will establish organic electrochemical transistors as pivotal instruments in the field of biological detection. Here, we present a comprehensive review of the state-of-the-art technology and advancements in the use of organic electrochemical transistors as biosensors. This review provides an in-depth analysis of the diverse modification materials, methods, and mechanisms utilized in organic electrochemical transistor-structured biosensors (OETBs) for the selective detection of a wide range of target analyte encompassing electroactive species, electro-inactive species, and cancer cells. Recent advances in OETBs for use in sensing systems and wearable and implantable applications are also briefly introduced. Finally, challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Zhuotao Hu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yingchao Hu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Lu Huang
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Wei Zhong
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Jianfeng Zhang
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Dengyun Lei
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yayi Chen
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yao Ni
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yuan Liu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| |
Collapse
|
4
|
Qiao L, Guo T, Xue R, Sang R, Yang D, Deng F. Flexible chip-based wearable sensors enhanced by gold nanoparticles for IFN-γ detection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039230 DOI: 10.1109/embc53108.2024.10782776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Cytokines, essential regulatory proteins orchestrating various physiological processes and immune responses, play a pivotal role in assessing health status. Conventional cytokine detection methods, such as enzyme-linked immunosorbent assays, are reliable but time-consuming. Electrochemical aptamer-based sensors offer rapid response and higher selectivity, but fall short of achieving non-invasive detection. This study addresses these limitations by introducing a novel approach to improve cytokine detection performance. We employ a one-step electrodeposition method to synthesize and coat structured gold nanoparticles (Au NPs) onto a working electrode, optimizing surface morphology by manipulating applied voltage, deposition time, and reactant concentrations. The resulting nanostructured Au NPs exhibit diverse and previously unreported morphologies. Leveraging these advancements, we design a wearable device integrating the Au NPs-based sensor with structure-switch aptamers on a microfluidic chip. This wearable sensor shows a limit of detection of 0.3 pg/mL and a larger linear range of 0.3-100 pg/mL. This innovation allows for the non-invasive and continuous detection of cytokines, marking a significant step towards the development of wearable electrochemical biosensors for health monitoring.Clinical Relevance- This research provides a novel wearable sensor for non-invasive continuous monitoring of cytokine IFN-γ from human sweat. This innovation holds immense clinical relevance, offering real-time insights into early disease responses and the onset of non-communicable health conditions. The advancement of wearable electrochemical biosensors, exhibiting enhanced performance, addresses a crucial need in clinical practice. This development offers a versatile and efficient tool for patient-friendly health monitoring, marking a significant step forward in the field.
Collapse
|
5
|
Davodabadi F, Mirinejad S, Fathi-Karkan S, Majidpour M, Ajalli N, Sheervalilou R, Sargazi S, Rozmus D, Rahdar A, Diez-Pascual AM. Aptamer-functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: A comprehensive overview of recent trends. Biotechnol Prog 2023; 39:e3366. [PMID: 37222166 DOI: 10.1002/btpr.3366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Aptamers (Apts) are synthetic nucleic acid ligands that can be engineered to target various molecules, including amino acids, proteins, and pharmaceuticals. Through a series of adsorption, recovery, and amplification steps, Apts are extracted from combinatorial libraries of synthesized nucleic acids. Using aptasensors in bioanalysis and biomedicine can be improved by combining them with nanomaterials. Moreover, Apt-associated nanomaterials, including liposomes, polymeric, dendrimers, carbon nanomaterials, silica, nanorods, magnetic NPs, and quantum dots (QDs), have been widely used as promising nanotools in biomedicine. Following surface modifications and conjugation with appropriate functional groups, these nanomaterials can be successfully used in aptasensing. Advanced biological assays can use Apts immobilized on QD surfaces through physical interaction and chemical bonding. Accordingly, modern QD aptasensing platforms rely on interactions between QDs, Apts, and targets to detect them. QD-Apt conjugates can be used to directly detect prostate, ovarian, colorectal, and lung cancers or simultaneously detect biomarkers associated with these malignancies. Tenascin-C, mucin 1, prostate-specific antigen, prostate-specific membrane antigen, nucleolin, growth factors, and exosomes are among the cancer biomarkers that can be sensitively detected using such bioconjugates. Furthermore, Apt-conjugated QDs have shown great potential for controlling bacterial infections such as Bacillus thuringiensis, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Campylobacter jejuni, Staphylococcus aureus, and Salmonella typhimurium. This comprehensive review discusses recent advancements in the design of QD-Apt bioconjugates and their applications in cancer and bacterial theranostics.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahdi Majidpour
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ana M Diez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analitica, Quimica Fisica e Ingenieria Quimica, Madrid, Spain
| |
Collapse
|
6
|
Upasham S, Pali M, Jagannath B, Lin KC, Prasad S. Electrochemical Aptasensing for Lifestyle and Chronic Disease Management. Curr Med Chem 2023; 30:895-909. [PMID: 35619314 DOI: 10.2174/0929867329666220520111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/21/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022]
Abstract
Over the past decade, researchers have investigated electrochemical sensing for the purpose of fabricating wearable point-of-use platforms. These wearable platforms have the ability to non-invasively track biomarkers that are clinically relevant and provide a comprehensive evaluation of the user's health. Due to many significant operational advantages, aptamer-based sensing is gaining traction.Aptamer-based sensors have properties like long-term stability, resistance to denaturation, and high sensitivity. Using electrochemical sensing with aptamer-based biorecognition is advantageous because it provides significant benefits like lower detection limits, a wider range of operations, and, most importantly, the ability to detect using a label-free approach. This paper provides an outlook into the current state of electrochemical aptasensing. This review looks into the significance of the detection of biomarkers like glucose, cortisol etc., for the purpose of lifestyle and chronic disease monitoring. Moreover, this review will also provide a comprehensive evaluation of the current challenges and prospects in this field.
Collapse
Affiliation(s)
- Sayali Upasham
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| | - Madhavi Pali
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| | - Badrinath Jagannath
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| | - Kai-Chun Lin
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| |
Collapse
|
7
|
Mostufa S, Akib TBA, Rana MM, Islam MR. Highly Sensitive TiO 2/Au/Graphene Layer-Based Surface Plasmon Resonance Biosensor for Cancer Detection. BIOSENSORS 2022; 12:bios12080603. [PMID: 36004999 PMCID: PMC9405676 DOI: 10.3390/bios12080603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 05/27/2023]
Abstract
In this article, a hybrid TiO2/Au/graphene layer-based surface plasmon resonance (SPR) sensor with improved sensitivity and capability for cancer detection is presented. The finite element method (FEM) was used for numerical analysis. The proposed SPR biosensor was structured based on the angular analysis of the attenuated total reflection (ATR) method for the detection of various types of cancer using the refractive index component. The resonance angle shifted owing to the increment of normal and cancerous cells' refractive index, which varied between 1.36 and 1.401 for six different types of normal and cancerous cells. According to numerical results, the obtained sensitivities for skin (basal), cervical (HeLa), adrenal gland (PC12), blood (Jurkat), and breast (MCF-7 and MDA-MB-231) cancer cells were 210 deg/RIU, 245.83 deg/RIU, 264.285 deg/RIU, 285.71 deg/RIU, 292.86 deg/RIU, and 278.57 deg/RIU, respectively. Furthermore, the detection accuracy (DA), figure of merits (FOM), and signal-to-noise ratio (SNR) were also obtained, with values of 0.263 deg-1, 48.02 RIU-1, and 3.84, respectively. Additionally, the distribution of the electric field and the propagation of the magnetic field for resonant and non-resonant conditions of the proposed structure were illustrated. It was found that an enhanced field was exhibited on the surface of the plasmonic material for resonant conditions. We also measured the penetration depth of 180 nm using decayed electric field intensity. Furthermore, the impact of using a TiO2/Au/graphene layer was demonstrated. We further conducted analyses of the effects of the thickness of the gold layer and the effects of additional graphene layers on overall sensitivities for six different types of cancer. The proposed TiO2/Au/graphene layered structure exhibited the highest overall sensitivity in terms of detecting cancerous cells from healthy cells. Moreover, the proposed sensor was numerically analyzed for a wide range of biological solutions (refractive index 1.33-1.41), and the sensor linearity was calculated with a linear regression coefficient (R2) of 0.9858. Finally, numerical results obtained in this manuscript exhibited high sensitivity in comparison with previously reported studies.
Collapse
Affiliation(s)
- Shahriar Mostufa
- Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Tarik Bin Abdul Akib
- Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Md. Masud Rana
- Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Md. Rabiul Islam
- School of Electrical, Computer and Telecommfiunications Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Li S, Kawashima D, Sugawara M, Obara H, Okeyo KO, Takei M. Study of transmembrane ion transport under tonicity imbalance using a combination of low frequency-electrical impedance spectroscopy (LF-EIS) and improved ion transport model. Biomed Phys Eng Express 2022; 8. [PMID: 35316798 DOI: 10.1088/2057-1976/ac5fc5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/22/2022] [Indexed: 11/12/2022]
Abstract
Transmembrane ion transport under tonicity imbalance has been investigated using a combination of low frequency-electrical impedance spectroscopy (LF-EIS) and improved ion transport model, by considering the cell diameterd[m] and the initial intracellular ion concentrationcin[mM] as a function of tonicity expressed by sucrose concentrationcs[mM]. The transmembrane ion transport is influenced by extracellular tonicity conditions, leading to a facilitation/inhibition of ion passage through the cell membrane. The transmembrane transport coefficientP[m s-1], which represents the ability of transmembrane ion transport, is calculated by the extracellular ion concentrations obtained by improved ion transport model and LF-EIS measurement.Pis calculated as 4.11 × 10-6and 3.44 × 10-6m s-1atcsof 10 and 30 mM representing hypotonic condition, 2.44 × 10-6m s-1atcsof 50 mM representing isotonic condition, and 3.68 × 10-6, 5.16 × 10-6, 9.51 × 10-6, and 14.89 × 10-6m s-1atcsof 75, 100, 125 and 150 mM representing hypertonic condition. The LF-EIS results indicate that the transmembrane ion transport is promoted under hypertonic and hypotonic conditions compared to isotonic condition. To verify the LF-EIS results, fluorescence intensityF[-] of extracellular potassium ions is observed to obtain the temporal distribution of average potassium ion concentration within the region of 3.6μm from cell membrane interfacecROI[mM]. The slopes of ∆cROI/cROI1to timetare 0.0003, 0.0002, and 0.0006 under hypotonic, isotonic, and hypertonic conditions, wherecROI1denotes initialcROI, which shows the same tendency with LF-EIS result that is verified by the potassium ion fluorescence observation.
Collapse
Affiliation(s)
- Songshi Li
- Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Daisuke Kawashima
- Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Michiko Sugawara
- Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Hiromichi Obara
- Department of Mechanical System Engineering, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino-shi, Tokyo, 191-0065, Japan
| | - Kennedy Omondi Okeyo
- Department of Biomechanics, Institute for Frontier Life &and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Masahiro Takei
- Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| |
Collapse
|
9
|
Wu C, Barkova D, Komarova N, Offenhäusser A, Andrianova M, Hu Z, Kuznetsov A, Mayer D. Highly selective and sensitive detection of glutamate by an electrochemical aptasensor. Anal Bioanal Chem 2021; 414:1609-1622. [PMID: 34783880 DOI: 10.1007/s00216-021-03783-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023]
Abstract
An electrochemical aptamer-based sensor was developed for glutamate, the major excitatory neurotransmitter in the central nervous system. Determining glutamic acid release and glutamic acid levels is crucial for studying signal transmission and for diagnosing pathological conditions in the brain. Glutamic acid-selective oligonucleotides were isolated from an ssDNA library using the Capture-SELEX protocol in complex medium. The selection permitted the isolation of an aptamer 1d04 with a dissociation constant of 12 µM. The aptamer sequence was further used in the development of an electrochemical aptamer sensor. For this purpose, a truncated aptamer sequence named glu1 was labelled with a ferrocene redox tag at the 3'-end and immobilized on a gold electrode surface via Au-thiol bonds. Using 6-mercapto-1-hexanol as the backfill, the sensor performance was characterized by alternating current voltammetry. The glu1 aptasensor showed a limit of detection of 0.0013 pM, a wide detection range between 0.01 pM and 1 nM, and good selectivity for glutamate in tenfold diluted human serum. With this enzyme-free aptasensor, the highly selective and sensitive detection of glutamate was demonstrated, which possesses great potential for implementation in microelectrodes and for in vitro as well as in vivo monitoring of neurotransmitter release.
Collapse
Affiliation(s)
- Changtong Wu
- Institute of Biological Information Processing, (IBI-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Faculty I, RWTH Aachen University, 52062, Aachen, Germany
| | - Daria Barkova
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, Moscow, 124498, Russia
| | - Natalia Komarova
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, Moscow, 124498, Russia
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, (IBI-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Faculty I, RWTH Aachen University, 52062, Aachen, Germany
| | - Mariia Andrianova
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, Moscow, 124498, Russia
| | - Ziheng Hu
- Institute of Biological Information Processing, (IBI-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Alexander Kuznetsov
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, Moscow, 124498, Russia.
| | - Dirk Mayer
- Institute of Biological Information Processing, (IBI-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
10
|
Vandghanooni S, Sanaat Z, Farahzadi R, Eskandani M, Omidian H, Omidi Y. Recent progress in the development of aptasensors for cancer diagnosis: Focusing on aptamers against cancer biomarkers. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Physical Surface Modification of Carbon-Nanotube/Polydimethylsiloxane Composite Electrodes for High-Sensitivity DNA Detection. NANOMATERIALS 2021; 11:nano11102661. [PMID: 34685103 PMCID: PMC8541392 DOI: 10.3390/nano11102661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
The chemical modification of electrode surfaces has attracted significant attention for lowering the limit of detection or for improving the recognition of biomolecules; however, the chemical processes are complex, dangerous, and difficult to control. Therefore, instead of the chemical process, we physically modified the surface of carbon-nanotube/polydimethylsiloxane composite electrodes by dip coating them with functionalized multi-walled carbon nanotubes (F-MWCNTs). These electrodes are used as working electrodes in electrochemistry, where they act as a recognition layer for sequence-specific DNA sensing through π-π interactions. The F-MWCNT-modified electrodes showed a limit of detection of 19.9 fM, which was 1250 times lower than that of pristine carbon/polydimethylsiloxane electrodes in a previous study, with a broad linear range of 1-1000 pM. The physically modified electrode was very stable during the electrode regeneration process after DNA detection. Our method paves the way for utilizing physical modification to significantly lower the limit of detection of a biosensor system as an alternative to chemical processes.
Collapse
|
12
|
Applications of electrochemical biosensor of aptamers-based (APTASENSOR) for the detection of leukemia biomarker. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
13
|
Advances in Electrochemical and Acoustic Aptamer-Based Biosensors and Immunosensors in Diagnostics of Leukemia. BIOSENSORS-BASEL 2021; 11:bios11060177. [PMID: 34073054 PMCID: PMC8227535 DOI: 10.3390/bios11060177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
Early diagnostics of leukemia is crucial for successful therapy of this disease. Therefore, development of rapid, sensitive, and easy-to-use methods for detection of this disease is of increased interest. Biosensor technology is challenged for this purpose. This review includes a brief description of the methods used in current clinical diagnostics of leukemia and provides recent achievements in sensor technology based on immuno- and DNA aptamer-based electrochemical and acoustic biosensors. The comparative analysis of immuno- and aptamer-based sensors shows a significant advantage of DNA aptasensors over immunosensors in the detection of cancer cells. The acoustic technique is of comparable sensitivity with those based on electrochemical methods; moreover, it is label-free and provides straightforward evaluation of the signal. Several examples of sensor development are provided and discussed.
Collapse
|
14
|
Oravczová V, Garaiová Z, Hianik T. Nanoparticles and Nanomotors Modified by Nucleic Acids Aptamers for Targeted Drug Delivery. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Subjakova V, Oravczova V, Hianik T. Polymer Nanoparticles and Nanomotors Modified by DNA/RNA Aptamers and Antibodies in Targeted Therapy of Cancer. Polymers (Basel) 2021; 13:341. [PMID: 33494545 PMCID: PMC7866063 DOI: 10.3390/polym13030341] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Polymer nanoparticles and nano/micromotors are novel nanostructures that are of increased interest especially in the diagnosis and therapy of cancer. These structures are modified by antibodies or nucleic acid aptamers and can recognize the cancer markers at the membrane of the cancer cells or in the intracellular side. They can serve as a cargo for targeted transport of drugs or nucleic acids in chemo- immuno- or gene therapy. The various mechanisms, such as enzyme, ultrasound, magnetic, electrical, or light, served as a driving force for nano/micromotors, allowing their transport into the cells. This review is focused on the recent achievements in the development of polymer nanoparticles and nano/micromotors modified by antibodies and nucleic acid aptamers. The methods of preparation of polymer nanoparticles, their structure and properties are provided together with those for synthesis and the application of nano/micromotors. The various mechanisms of the driving of nano/micromotors such as chemical, light, ultrasound, electric and magnetic fields are explained. The targeting drug delivery is based on the modification of nanostructures by receptors such as nucleic acid aptamers and antibodies. Special focus is therefore on the method of selection aptamers for recognition cancer markers as well as on the comparison of the properties of nucleic acid aptamers and antibodies. The methods of immobilization of aptamers at the nanoparticles and nano/micromotors are provided. Examples of applications of polymer nanoparticles and nano/micromotors in targeted delivery and in controlled drug release are presented. The future perspectives of biomimetic nanostructures in personalized nanomedicine are also discussed.
Collapse
Affiliation(s)
| | | | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia; (V.S.); (V.O.)
| |
Collapse
|
16
|
Solhi E, Hasanzadeh M. Critical role of biosensing on the efficient monitoring of cancer proteins/biomarkers using label-free aptamer based bioassay. Biomed Pharmacother 2020; 132:110849. [PMID: 33068928 DOI: 10.1016/j.biopha.2020.110849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is the second most extended disease during the world with an improved death rate over the past several time. Due to the restrictions of cancer analysis methods, the patient's real survival rate is unknown. Therefore early stage diagnosis of cancer is crucial for its strong detection. Bio-analysis based on biomarkers may help to overcome this problem. Aptamers can be employed as high-affinity tools for cancer detection. The utilization of aptamer-based strategy in cancer investigation and strategy shows new opportunities in biotechnology. The label-free system is an important method to study biomolecules in different sizes, such as biomarkers in real-time because of their greatest sensitivity, selectivity, and multi examination. In this review (with 75 references), excellent features of the label-free aptasensors on the sensitive and accurate monitoring of cancer biomarkers were discussed. Also, the role of advanced of nanomaterials on the construction of label-free aptasensors were investigated. In addition, application of different detection methods such as electrochemical, optical, electronic, and photoelectrochemical (PEC), electrochemiluminescence (ECL) were surveyed. Finally, advantages and limitation of different strategies on the early stage diagnosis of cancer biomarkers were discussed. This article has been updated until July 2020.
Collapse
Affiliation(s)
- Elham Solhi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Aptamer-based electrochemical biosensing strategy toward human non-small cell lung cancer using polyacrylonitrile/polypyrrole nanofibers. Anal Bioanal Chem 2020; 412:7851-7860. [PMID: 32935151 DOI: 10.1007/s00216-020-02916-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
In the present study, a sensitive electrochemical aptamer-based biosensing strategy for human non-small cell lung cancer (NSCLC) detection was proposed using nanofiber-modified disposable pencil graphite electrodes (PGEs). The composite nanofiber was comprised of polyacrylonitrile (PAN) and polypyrrole (PPy) polymers, and fabrication of the nanofibers was accomplished using electrospinning process onto PGEs. Development of the nanofibers was confirmed using scanning electron microscopy (SEM). The high-affinity 5'-aminohexyl-linked aptamer was immobilized onto a PAN/PPy composite nanofiber-modified sensor surface via covalent bonding strategy. After incubation with NSCLC living cells (A549 cell line) at 37.5 °C, the recognition between aptamer and target cells was monitored by electrochemical impedance spectroscopy (EIS). The selectivity of the aptasensor was evaluated using nonspecific human cervical cancer cells (HeLa) and a nonspecific aptamer sequence. The proposed electrochemical aptasensor showed high sensitivity toward A549 cells with a detection limit of 1.2 × 103 cells/mL. The results indicate that our label-free electrochemical aptasensor has great potential in the design of aptasensors for the diagnostics of other types of cancer cells with broad detection capability in clinical analysis. Graphical abstract.
Collapse
|
18
|
Kordasht HK, Hasanzadeh M. Aptamer based recognition of cancer cells: Recent progress and challenges in bioanalysis. Talanta 2020; 220:121436. [PMID: 32928438 DOI: 10.1016/j.talanta.2020.121436] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023]
Abstract
Rapid and accurate monitoring of cancer cells with high sensitivity is essential for a successful cancer treatment. As high-affinity nucleic acid ligands, aptamers can improve the properties of detection methods by conjugating with intracellular or extracellular cancer biomarkers. Despite the advances in the early detection and treatment of cancer cells, lacking effective early detection tools is one of the causes of a high mortality rate. Aptasensors, which are based on the specificity of aptamer-target recognition, with transduction for analytical purposes have received particular attention due to their high sensitivity and selectivity, simple instrumentation, as well as low production cost. In this review, some selective and sensitive methods were summarized based on advanced nanomaterials towards aptasensing of cancer cells, such as blood, breast, cervical, colon, gastric, liver, and lung cancer cells. This review summarizes advances from 2010 to June 2020 in the development of aptasensors for cancer cell detection. Various aptasensing strategies are assessed according to their potential for reaching relevant limits of sensitivity, specificity, and degrees of multiplexing. Furthermore, we address the remaining challenges and opportunities to integrate aptasensing platforms into point-of-care solutions. Finally, the advantages and limitations of aptamer-based aptasensing strategies were reviewed.
Collapse
Affiliation(s)
- Houman Kholafazad Kordasht
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Zheng J, Shi H, Wang M, Duan C, Huang Y, Li C, Xiang Y, Li G. Homogenous Electrochemical Method for Ultrasensitive Detection of Tumor Cells Designed by Introduction of Poly(A) Tails onto Cell Membranes. Anal Chem 2019; 92:2194-2200. [PMID: 31850744 DOI: 10.1021/acs.analchem.9b04877] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapid and efficient detection of tumor cells is one of the central challenges for modern analytical technology. In this paper, we report a polyadenine (poly(A)) tail-based strategy for ultrasensitive detection of tumor cells in aqueous solution with an electrochemical technique. Specifically, tumor cell-specific EpCAM aptamers without any modification can tightly bind on cell membranes and facilitate the subsequent introduction of multiple poly(A) tails via programmable terminal deoxynucleotidyl transferase (TdT)-mediated elongation. Meanwhile, since tumor cells bearing poly(A) tails can be easily adsorbed onto the surface of gold electrodes through a strong interaction between adenosines and gold, a highly amplified electrochemical signal can be obtained. Thus, by virtue of poly(A) tails, the proposed method allows the detection of as low as 3 cells mL-1. Compared with the previously reported methods for tumor cells detection, this poly(A)-based homogeneous electrochemical method needs just one enzyme and one aptamer without any modification and avoids the complex and time-consuming modification process of the working electrode, which holds great potential application in the future.
Collapse
Affiliation(s)
- Ji Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Hai Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Mengjiao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Yue Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , P. R. China
| | - Chao Li
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China.,Center for Molecular Recognition and Biosensing, School of Life Sciences , Shanghai University , Shanghai 200444 , P. R. China
| |
Collapse
|
20
|
Challenges in Electrochemical Aptasensors and Current Sensing Architectures Using Flat Gold Surfaces. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, reagentless aptamer biosensors, named aptasensors, have shown significant advancements. Particularly, electrochemical aptasensors could change the field of biosensors in this era, where digitalization seems to be a common goal of many fields. Biomedical devices are integrating electronic technologies for detecting pathogens, biomolecules, small molecules, and ions, and the physical-chemical properties of nucleic acid aptamers makes them very interesting for these devices. Aptamers can be easily synthesized and functionalized with functional groups for immobilization and with redox chemical groups that allow for the conversion of molecular interactions into electrical signals. Furthermore, non-labeled aptamers have also been utilized. This review presents the current challenges involved in aptasensor architectures based on gold electrodes as transducers.
Collapse
|
21
|
Sun D, Lu J, Zhang L, Chen Z. Aptamer-based electrochemical cytosensors for tumor cell detection in cancer diagnosis: A review. Anal Chim Acta 2019; 1082:1-17. [PMID: 31472698 DOI: 10.1016/j.aca.2019.07.054] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 01/25/2023]
Abstract
Circulating tumor cells, a type of viable cancer cell circulating from primary or metastatic tumors in the blood stream, can lead to the parallel development of primary tumors and metastatic lesions. Highly selective and sensitive detection of tumor cells has become a hot research topic and can provide a basis for early diagnosis of cancers and anticancer drug evaluation to develop the best treatment plan. Aptamers are single-stranded oligonucleotides that can bind to target tumor cells in unique three-dimensional structures with high specificity and affinity. Aptamer-based methods or signal amplification methods using aptamers show great potential in improving the selectivity and sensitivity of electrochemical (EC) cytosensors for tumor cell detection. This review covers the remarkable developments in aptamer-based EC cytosensors for the identification of cell type, cell counting and detection of crucial proteins on the cell surface. Various EC techniques have been developed for cancer cell detection, including common voltammetry or impedance, electrochemiluminescence and photoelectrochemistry in a direct approach (aptamer-target cell), sandwich approach (capture probe-target cell-signaling probe) or other approach. The current challenges and promising opportunities in the establishment of EC aptamer cytosensors for tumor cell detection are also discussed.
Collapse
Affiliation(s)
- Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Jing Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
22
|
Impedimetric biosensor for detection of cancer cells employing carbohydrate targeting ability of Concanavalin A. Biosens Bioelectron 2018; 122:95-103. [DOI: 10.1016/j.bios.2018.08.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/30/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
|
23
|
Fu L, Liu J, Hu Z, Zhou M. Recent Advances in the Construction of Biofuel Cells Based Self-powered Electrochemical Biosensors: A Review. ELECTROANAL 2018. [DOI: 10.1002/elan.201800487] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liangying Fu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education; National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University; Changchun, Jilin Province 130024 P.R. China
| | - Jingju Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education; National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University; Changchun, Jilin Province 130024 P.R. China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine; Beijing 100850 P.R. China
| | - Ming Zhou
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education; National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University; Changchun, Jilin Province 130024 P.R. China
| |
Collapse
|
24
|
Bábelová L, Sohová ME, Poturnayová A, Buríková M, Bizík J, Hianik T. Label-free Electrochemical Aptasensor for Jurkat Cells Detection as a Potential Diagnostic Tool for Leukemia. ELECTROANAL 2018. [DOI: 10.1002/elan.201800091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lenka Bábelová
- Department of Nuclear Physics and Biophysics; Comenius University; Mlynská dolina F1 842 48 Bratislava Slovakia
- Institute of Animal Biochemistry and Genetics, Center of Biosciences SAS; Dúbravská cesta 9 840 05 Bratislava Slovakia
| | - Marianna Eliášová Sohová
- Department of Nuclear Physics and Biophysics; Comenius University; Mlynská dolina F1 842 48 Bratislava Slovakia
| | - Alexandra Poturnayová
- Department of Nuclear Physics and Biophysics; Comenius University; Mlynská dolina F1 842 48 Bratislava Slovakia
- Institute of Animal Biochemistry and Genetics, Center of Biosciences SAS; Dúbravská cesta 9 840 05 Bratislava Slovakia
| | - Monika Buríková
- Cancer Research Institute, Biomedical Research Center SAS; Dúbravská cesta 9 845 05 Bratislava Slovakia
| | - Jozef Bizík
- Cancer Research Institute, Biomedical Research Center SAS; Dúbravská cesta 9 845 05 Bratislava Slovakia
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics; Comenius University; Mlynská dolina F1 842 48 Bratislava Slovakia
| |
Collapse
|
25
|
Dutta Chowdhury A, Ganganboina AB, Tsai YC, Chiu HC, Doong RA. Multifunctional GQDs-Concanavalin A@Fe 3O 4 nanocomposites for cancer cells detection and targeted drug delivery. Anal Chim Acta 2018; 1027:109-120. [PMID: 29866260 DOI: 10.1016/j.aca.2018.04.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/05/2018] [Indexed: 01/08/2023]
Abstract
Multifunctional nanocomposites containing intrinsic property for serving as the sensing elements as well as targeted nanoconjugates are highly preferred in various therapeutic applications. In this work, nanocomposites of graphene quantum dots (GQDs) and Fe3O4 with conjugation of lectin protein, concanavalin A, to form GQD-ConA@Fe3O4 nanocomposites are developed for both detection of cancer cell and release of drugs to HeLa cells. The GQD-ConA@Fe3O4 nanocomposites deposited on Pt electrode can detect cancerous HeLa cells over normal endothelial cells with a dynamic linear range of 5 × 102 to 1 × 105 cells mL-1 with a detection limit of 273 cell mL-1. The GQD-ConA@Fe3O4 also can serve as nanocarriers for loading and delivering doxorubicin (Dox). The in vitro cell images show that the Dox concentration in HeLa cells is enhanced more than double in the presence of external magnetic field due to the incorporation of Fe3O4 in the nanocarrier. The cytotoxicity assay indicates that the susceptibility of cancerous HeLa cells to Dox is 13% higher than that of normal cells, confirming the selective role of ConA in nanocarriers. Results clearly indicate the GQD-ConA@Fe3O4 nanocomposites as a promising material for cancer cell detection and targeted Dox release toward HeLa cells which can serve as the multifunctional platform for novel cancer cell diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ankan Dutta Chowdhury
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan, ROC
| | - Akhilesh Babu Ganganboina
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | - Yuan-Chung Tsai
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC.
| | - Ruey-An Doong
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan, ROC; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC.
| |
Collapse
|
26
|
Kun Q, Lin Y, Peng H, Cheng L, Cui H, Hong N, Xiong J, Fan H. A “signal-on” switch electrochemiluminescence biosensor for the detection of tumor cells. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Hasanzadeh M, Razmi N, Mokhtarzadeh A, Shadjou N, Mahboob S. Aptamer based assay of plated-derived grow factor in unprocessed human plasma sample and MCF-7 breast cancer cell lysates using gold nanoparticle supported α-cyclodextrin. Int J Biol Macromol 2017; 108:69-80. [PMID: 29180051 DOI: 10.1016/j.ijbiomac.2017.11.149] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 01/06/2023]
Abstract
Platelet-derived growth factor (PDGF), a protein biomarker, is directly involved in many cell transformation processes, such as tumor growth and progression. Elevation platelet-derived growth factor (PDGF-BB) concentration in plasma could indicate the accelerating growth of metastatic breast tumors and angiogenesis. The development of an apta-assay for detection of PDGF-BB in is presented in this work. A highly specific DNA-aptamer, selected to PDGF-BB was immobilized onto a gold nanoparticles supported α-cyclodextrin and electrochemical measurements were performed in a solution containing the phosphate buffer solution with physiological pH. Variety of shapes of gold nanostructures with different sizes from zero-dimensional nanoparticles to spherical structures were prepared by one-step template (α-cyclodextrin)-assistant green electrodeposition method. Fully electrochemical methodology was used to prepare a new transducer on a gold surface which provided a high surface area to immobilize a high amount of the aptamer. The surface morphology of electrode was characterized by high-resolution field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDX). The prepared aptasensors represented different electrochemical activities toward the redox processes of PDGF-BB attributing to the size and shape of the gold nanoparticles. The aptasensor was employed for the detection of PDGF using square wave voltammetry (SWV) and Cyclic voltammetry (CV) techniques. Under optimized condition the calibration curve for PDGF-BB was linear in 0.52-1.52nM with low limit of quantification of 0.52nM. Also, under the optimized experimental conditions, the proposed aptasensor of GNPs-cubic-α-CD-Apt-Au electrode exhibited excellent analytical performance for MCF-7 cells determination, ranging from 328 TO 593 cells mL-1 with low limit of quantification of 328 cells mL-1. As a result, the electrochemical aptasensor was able to detect cancer-related targets in unprocessed human plasma samples.
Collapse
Affiliation(s)
- Mohammad Hasanzadeh
- Drug Applied Research Center, TabrizUniversity of Medical Sciences, Tabriz 51664, Iran.
| | - Nasrin Razmi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nano Technology Research Center, Urmia University, Urmia 57154, Iran; Department of Nano Technology, Faculty of Science, Urmia University, Urmia 57154, Iran
| | - Soltanali Mahboob
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| |
Collapse
|
28
|
Flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblast cancer cells using MWCNTs-Pd nano/PTCA/aptamer as labeled aptamer for the signal amplification. Anal Chim Acta 2017; 985:61-68. [PMID: 28864195 DOI: 10.1016/j.aca.2017.07.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/16/2017] [Accepted: 07/21/2017] [Indexed: 12/29/2022]
Abstract
In this research, we demonstrated a flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblasts (CCRF-CEM) based on poly(3,4-ethylenedioxythiophene) decorated with gold nanoparticles (PEDOT-Aunano) as a nano platform to immobilize thiolated sgc8c aptamer and multiwall carbon nanotubes decorated with palladium nanoparticles/3,4,9,10-perylene tetracarboxylic acid (MWCNTs-Pdnano/PTCA) to fabricate catalytic labeled aptamer. In the proposed sensing strategy, the CCRF-CEM cancer cells were sandwiched between immobilized sgc8c aptamer on PEDOT-Aunano modified surface electrode and catalytic labeled sgc8c aptamer (MWCNTs-Pdnano/PTCA/aptamer). After that, the concentration of CCRF-CEM cancer cells was determined in presence of 0.1 mM hydrogen peroxide (H2O2) as an electroactive component. The attached MWCNTs-Pdnano nanocomposites to CCRF-CEM cancer cells amplified the electrocatalytic reduction of H2O2 and improved the sensitivity of the sensor to CCRF-CEM cancer cells. The MWCNT-Pdnano nanocomposite was characterized with transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). The electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to confirm the stepwise changes in the electrochemical surface properties of the electrode. The proposed sandwich-type electrochemical aptasensor exhibited an excellent analytical performance for the detection of CCRF-CEM cancer cells ranging from 1.0 × 101 to 5.0 × 105 cells mL-1. The limit of detection was 8 cells mL-1. The proposed aptasensor showed high selectivity toward CCRF-CEM cancer cells. The proposed aptasensor was also applied to the determination of CCRF-CEM cancer cells in human serum samples.
Collapse
|
29
|
Abstract
Leukemia is a cancer of blood cells and bone marrow, leading to death in many patients mainly in children. Over the last several years, aptamers generated by SELEX (Systematic evolution of ligands by exponential enrichment) method, have quickly become a new class of targeting ligands for drug delivery applications and recently have been widely exploited in different biomedical applications, due to several potent properties such as high binding affinity and selectivity, low or no immunogenicity and toxicity, low cost and thermal stability. In this review, we presented in details about aptamers involved in targeting, and treatment of leukemia. Moreover, some analytical approaches such as electrochemical and optical aptasensors were introduced for detection and diagnosis of leukemia. Finally, we discussed about the directions and challenges of aptamer application in this field.
Collapse
|
30
|
The Optimization and Characterization of an RNA-Cleaving Fluorogenic DNAzyme Probe for MDA-MB-231 Cell Detection. SENSORS 2017; 17:s17030650. [PMID: 28335559 PMCID: PMC5375936 DOI: 10.3390/s17030650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers in females worldwide and lacks specific biomarkers for early detection. In a previous study, we obtained a selective RNA-cleaving Fluorogenic DNAzyme (RFD) probe against MDA-MB-231 cells, typical breast cancer cells, through the systematic evolution of ligands by exponential process (SELEX). To improve the performance of this probe for actual application, we carried out a series of optimization experiments on the pH value of a reaction buffer, the type and concentration of cofactor ions, and sequence minimization. The length of the active domain of the probe reduced to 25 nt from 40 nt after optimization, which was synthesized more easily and economically. The detection limit of the optimized assay system was 2000 MDA-MB-231 cells in 30 min, which is more sensitive than the previous one (almost 5000 cells). The DNAzyme probe was also capable of distinguishing MDA-MB-231 cell specifically from 3 normal cells and 10 other tumor cells. This probe with high sensitivity, selectivity, and economic efficiency enhances the feasibility for further clinical application in breast cancer diagnosis. Herein, we developed an optimization system to produce a general strategy to establish an easy-to-use DNAzyme-based assay for other targets.
Collapse
|
31
|
Zanghelini F, Frías IAM, Rêgo MJBM, Pitta MGR, Sacilloti M, Oliveira MDL, Andrade CAS. Biosensing breast cancer cells based on a three-dimensional TIO 2 nanomembrane transducer. Biosens Bioelectron 2016; 92:313-320. [PMID: 27840037 DOI: 10.1016/j.bios.2016.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022]
Abstract
The early diagnosis of breast cancer is crucial for the successful treatment and recovery phases of the patients suffering from the disease. Although mammography is considered the gold standard for diagnosis, it fails to detect some cancers in high-density breasts. In this work, we propose for the first time a tridimensional biosensor platform, to be used on an electrochemical point-of-care device. The bioconjugated platform is constructed on a series of covalent linkages between lectin molecules and a cysteine layer immobilized over gold-coated TiO2 butterfly-like tridimensional nanomembranes. Through the use of vegetal lectins, we managed to take advantage of the markedly atypical glycomic profile of the cancerous mammalian cell membrane and successfully made a distinction between highly invasive (T47D) and less invasive (MCF7) cancer cell lines. The selectivity of the biosensor was tested by using normal human skin-fibroblast. The proposed cytosensor demonstrated limits of detection as low as 10 cells mL-1 for every cell line and a linear range from 10 to 1.0×106 cells mL-1. Considering that electrochemical impedance values can be correlated with the number of breast cancer cells present in the sample, we suggest that the proposed platform could be useful in facilitating the diagnosis of cancer.
Collapse
Affiliation(s)
- Fernando Zanghelini
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brasil
| | - Isaac A M Frías
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brasil
| | - Moacyr J B M Rêgo
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brasil
| | - Maira G R Pitta
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brasil
| | - Marco Sacilloti
- Departamento de Física, Universid ade Federal de Pernambuco, 50670-901 Recife, PE, Brasil
| | - Maria D L Oliveira
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brasil
| | - Cesar A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brasil; Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brasil.
| |
Collapse
|
32
|
Yu T, Zhang H, Huang Z, Luo Z, Huang N, Ding S, Feng W. A Simple Electrochemical Aptamer Cytosensor for Direct Detection of Chronic Myelogenous Leukemia K562 Cells. ELECTROANAL 2016. [DOI: 10.1002/elan.201600505] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tianxiao Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Hui Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Zhenglan Huang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Zhenhong Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Ningshu Huang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Wenli Feng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| |
Collapse
|
33
|
Hashkavayi AB, Raoof JB, Ojani R, Kavoosian S. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells. Biosens Bioelectron 2016; 92:630-637. [PMID: 27829554 DOI: 10.1016/j.bios.2016.10.042] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/29/2016] [Accepted: 10/18/2016] [Indexed: 01/10/2023]
Abstract
Colorectal cancer is one of the most common cancers in the world and has no effective treatment. Therefore, development of new methods for early diagnosis is instantly required. Biological recognition probes such as synthetic receptor and aptamer is one of the candidate recognition layers to detect important biomolecules. In this work, an electrochemical aptasensor was developed by fabricating an aptamer-cell-aptamer sandwich architecture on an SBA-15-3-aminopropyltriethoxysilane (SBA-15-pr-NH2) and Au nanoparticles (AuNPs) modified graphite screen printed electrode (GSPE) surface for the selective, label-free detection of CT26 cancer cells. Based on the incubation of the thiolated aptamer with CT26 cells, the electron-transfer resistance of Fe (CN)63-/4- redox couple increased considerably on the aptasensor surface. The results obtained from cyclic voltammetry and electrochemical impedance spectroscopy studies showed that the fabricated aptasensor can specifically identify CT26 cells in the concentration ranges of 10-1.0×105cells/mL and 1.0×105-6.0×106 cells/mL, respectively, with a detection limit of 2cells/mL. Applying the thiol terminated aptamer (5TR1) as a recognition layer led to a sensor with high affinity for CT26 cancer cells, compared to control cancer cells of AGS cells, VERO Cells, PC3 cells and SKOV-3 cells. Therefore a simple, rapid, label free, inexpensive, excellent, sensitive and selective electrochemical aptasensor based on sandwich architecture was developed for detection of CT26 Cells.
Collapse
Affiliation(s)
- Ayemeh Bagheri Hashkavayi
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Reza Ojani
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Saeid Kavoosian
- North Research Center, Pasteur Institute of Iran, Amol, Iran
| |
Collapse
|
34
|
Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens Bioelectron 2016; 87:433-438. [PMID: 27589408 DOI: 10.1016/j.bios.2016.08.090] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 11/24/2022]
Abstract
A sensitive and versatile surface plasmon resonance (SPR) biosensor was proposed for the detection of microRNA (miRNA) and cancer cell based on multiple signal amplification strategy. Thiol-modified hairpin probe, including a sequence complementary to the target miRNA, was first immobilized on the Au film. In the presence of target miRNA, the stem-loop structure of hairpin probe was unfolded, and then DNA-linked Au nanoparticles (AuNPs) were hybridized with the terminus of the unfolded hairpin probe. Subsequently, DNA-linked AuNPs initiated the formation of DNA supersandwich structure through the addition of two report DNA sequences. Owing to the electronic coupling between localized plasmon of the AuNPs and the surface plasmon wave, as well as the enhancement of the refractive index of the medium over the Au film induced by DNA supersandwich structure, the SPR response was significantly enhanced. Next, numerous positively charged silver nanoparticles (AgNPs) were absorbed onto the long-range DNA surpersandwich equably, resulting in a further increase of SPR response. Due to the enzyme-free multiple signal amplification strategy, as low as ca. 0.6 fM miRNA-21 could be detected. In addition, this biosensor showed high selectivity toward single-base mismatch. More importantly, this SPR biosensor was also used for cancer cell detection coupled with the cell-specific aptamer modified magnetic nanoparticles. Given that the biosensor avoided enzyme introduction, the limitation of the enzyme was overcome. The versatile biosensor has great potential for the broad applications in the field of clinical analysis.
Collapse
|
35
|
Label-free detection of C-reactive protein using an electrochemical DNA immunoassay. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Abstract
Nucleic acid aptamers are promising alternatives to antibodies in analytics. They are generally obtained through an iterative SELEX protocol that enriches a population of synthetic oligonucleotides to a subset that can recognize the chosen target molecule specifically and avidly. A wide range of targets is recognized by aptamers. Once identified and optimized for performance, aptamers can be reproducibly synthesized and offer other key features, like small size, low cost, sensitivity, specificity, rapid response, stability, and reusability. This makes them excellent options for sensory units in a variety of analytical platforms including those with electrochemical, optical, and mass sensitive transduction detection. Many novel sensing strategies have been developed by rational design to take advantage of the tendency of aptamers to undergo conformational changes upon target/analyte binding and employing the principles of base complementarity that can drive the nucleic acid structure. Despite their many advantages over antibodies, surprisingly few aptamers have yet been integrated into commercially available analytical devices. In this review, we discuss how to select and engineer aptamers for their identified application(s), some of the challenges faced in developing aptamers for analytics and many examples of their reported successful performance as sensors in a variety of analytical platforms.
Collapse
Affiliation(s)
- Muslum Ilgu
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames IA 50011, USA. and Aptalogic Inc., Ames IA 50014, USA
| | - Marit Nilsen-Hamilton
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames IA 50011, USA. and Aptalogic Inc., Ames IA 50014, USA and Ames Laboratory, US DOE, Ames IA 50011, USA
| |
Collapse
|
37
|
Li X, Fu H, He Y, Zhai Q, Guo J, Qing K, Yi G. Electrochemical Aptasensor for Rapid and Sensitive Determination ofSalmonellaBased on Target-Induced Strand Displacement and Gold Nanoparticle Amplification. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1151888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Fan D, Wu C, Wang K, Gu X, Liu Y, Wang E. A polydopamine nanosphere based highly sensitive and selective aptamer cytosensor with enzyme amplification. Chem Commun (Camb) 2015; 52:406-9. [PMID: 26526224 DOI: 10.1039/c5cc06754e] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With CCRF-CEM as the model cell, a highly sensitive and selective cytosensor was developed by taking advantage of polydopamine nanospheres for the first time. The strategies of aptamer/membrane protein recognition and Exonuclease III assisted cycle amplification were used for improving selectivity and sensitivity. The detection of limit reached was as low as 15 cells per mL.
Collapse
Affiliation(s)
- Daoqing Fan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | | | | | | | | | | |
Collapse
|
39
|
Wu MS, Liu Z, Xu JJ, Chen HY. Highly Specific Electrochemiluminescence Detection of Cancer Cells with a Closed Bipolar Electrode. ChemElectroChem 2015. [DOI: 10.1002/celc.201500361] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mei-Sheng Wu
- Department of Chemistry; College of Science; Nanjing Agricultural University, 1; Weigang Nanjing 210095 China
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative; Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University, 22; Hankou Road Nanjing 210093 China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative; Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University, 22; Hankou Road Nanjing 210093 China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative; Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University, 22; Hankou Road Nanjing 210093 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative; Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University, 22; Hankou Road Nanjing 210093 China
| |
Collapse
|
40
|
Martucci NM, Rea I, Ruggiero I, Terracciano M, De Stefano L, Migliaccio N, Palmieri C, Scala G, Arcari P, Rendina I, Lamberti A. A new strategy for label-free detection of lymphoma cancer cells. BIOMEDICAL OPTICS EXPRESS 2015; 6:1353-1362. [PMID: 25909019 PMCID: PMC4399674 DOI: 10.1364/boe.6.001353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/26/2015] [Accepted: 02/23/2015] [Indexed: 06/01/2023]
Abstract
In this paper, a new strategy for highly selective and sensitive direct detection of lymphoma cells by exploiting the interaction between a peptide and its B-cell receptor, has been evaluated. In particular, an idiotype peptide, able to specifically bind the B-cell receptor of A20 cells in mice engrafted with A20 lymphoma, has been used as molecular probe. The new detection technique has been demonstrated on a planar crystalline silicon chip. Coverage of 85% of silicon surface and detection efficiency of 8.5 × 10(-3) cells/μm(2) were obtained. The recognition strategy promises to extend its application in studying the interaction between ligands and their cell-surface receptors.
Collapse
Affiliation(s)
- Nicola M. Martucci
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples,
Italy
| | - Ilaria Rea
- Institute for Microelectronics and Microsystems, National Council of Research, Via P. Castellino 111, 80131 Naples,
Italy
| | - Immacolata Ruggiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples,
Italy
| | - Monica Terracciano
- Institute for Microelectronics and Microsystems, National Council of Research, Via P. Castellino 111, 80131 Naples,
Italy
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples,
Italy
| | - Luca De Stefano
- Institute for Microelectronics and Microsystems, National Council of Research, Via P. Castellino 111, 80131 Naples,
Italy
| | - Nunzia Migliaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples,
Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Germaneto, Catanzaro,
Italy
| | - Giuseppe Scala
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Germaneto, Catanzaro,
Italy
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples,
Italy
| | - Ivo Rendina
- Institute for Microelectronics and Microsystems, National Council of Research, Via P. Castellino 111, 80131 Naples,
Italy
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples,
Italy
| |
Collapse
|
41
|
Zhu B, Alsager OA, Kumar S, Hodgkiss JM, Travas-Sejdic J. Label-free electrochemical aptasensor for femtomolar detection of 17β-estradiol. Biosens Bioelectron 2015; 70:398-403. [PMID: 25845331 DOI: 10.1016/j.bios.2015.03.050] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/04/2015] [Accepted: 03/21/2015] [Indexed: 12/20/2022]
Abstract
We report an electrochemical aptasensor for the rapid, label-free detection of 17β-estradiol (E2) from femtomolar to micromolar levels. The sensor features an aptamer-functionalised nanoporous conducting polymer electrode whose surface potential is probed via electrochemical impedance spectroscopy. The unprecedented detection limit for E2 is explained via the redistribution of negative charges in the electrode double-layer region when the aptamer adopts a folded conformation around the small neutral target molecule. The sensor responds approximately logarithmically over a wide dynamic range of E2 concentration that spans biological trigger levels, with excellent discrimination against structurally similar molecules including progesterone, and robust operation in human urine. The generality of the approach of using conformationally gated small molecule binding aptamers is highlighted with a further example of adenosine detection via the adenosine binding aptamer.
Collapse
Affiliation(s)
- Bicheng Zhu
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Omar A Alsager
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Shalen Kumar
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Justin M Hodgkiss
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand.
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand.
| |
Collapse
|
42
|
Xiong X, Lv Y, Chen T, Zhang X, Wang K, Tan W. Nucleic acid aptamers for living cell analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:405-426. [PMID: 24896309 DOI: 10.1146/annurev-anchem-071213-015944] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cells as the building blocks of life determine the basic functions and properties of a living organism. Understanding the structure and components of a cell aids in the elucidation of its biological functions. Moreover, knowledge of the similarities and differences between diseased and healthy cells is essential to understanding pathological mechanisms, identifying diagnostic markers, and designing therapeutic molecules. However, monitoring the structures and activities of a living cell remains a challenging task in bioanalytical and life science research. To meet the requirements of this task, aptamers, as "chemical antibodies," have become increasingly powerful tools for cellular analysis. This article reviews recent advances in the development of nucleic acid aptamers in the areas of cell membrane analysis, cell detection and isolation, real-time monitoring of cell secretion, and intracellular delivery and analysis with living cell models. Limitations of aptamers and possible solutions are also discussed.
Collapse
Affiliation(s)
- Xiangling Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
| | | | | | | | | | | |
Collapse
|
43
|
Qu L, Xu J, Tan X, Liu Z, Xu L, Peng R. Dual-aptamer modification generates a unique interface for highly sensitive and specific electrochemical detection of tumor cells. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7309-15. [PMID: 24801611 DOI: 10.1021/am5006783] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Because circulating tumor cells (CTCs) have been proven to be an important clue of the tumor metastasis, their detection thus plays a pivotal role in the diagnosis and prognosis of cancer. Herein, we fabricate an electrochemical sensor by directly conjugating two cell-specific aptamers, TLS1c and TLS11a, which specifically recognize MEAR cancer cells, to the surface of a glassy carbon electrode (GCE) via the formation of amide bonds. The two aptamers are simultaneously conjugated to the GCE surface via precisely controlled linkers: TLS1c through a flexible linker (a single-stranded DNA T15; ss-TLS1c) and TLS11a through a rigid linker (a double-stranded DNA T15/A15; ds-TLS11a). It is found that such ss-TLS1c/ds-TLS11a dual-modified GCEs show greatly improved sensitivity in comparison with those modified with a single type of aptamer alone or ds-TLS1c/ds-TLS11a with both rigid linkers, suggesting that our optimized, rationally designed electrode-aptamer biosensing interface may enable better recognition and thus more sensitive detection of tumor cells. Through the utilization of this dual-aptamer-modified GCE, as few as a single MEAR cell in 10(9) whole blood cells can be successfully detected with a linear range of 1-14 MEAR cells. Our work demonstrates a rather simple yet well-designed and ultrasensitive tumor cell detection method based on the cell-specific aptamer-modified GCE, showing a promising potential for further CTC-related clinical applications.
Collapse
Affiliation(s)
- Liming Qu
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, China
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Yin J, He X, Wang K, Xu F, Shangguan J, He D, Shi H. Label-free and turn-on aptamer strategy for cancer cells detection based on a DNA-silver nanocluster fluorescence upon recognition-induced hybridization. Anal Chem 2013; 85:12011-9. [PMID: 24266455 DOI: 10.1021/ac402989u] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We present here a label-free and turn-on aptamer strategy for cancer cell detection based on the recognition-induced conformation alteration of aptamer and hybridization-induced fluorescence enhancement effect of DNA-silver nanoclusters (DNA-Ag NCs) in proximity of guanine-rich DNA sequences. In this strategy, two tailored DNA probes were involved. One is designed as a hairpin-shaped structure consisting of a target specific aptamer sequence at the 3'-end, a guanine-rich DNA sequence, and an arm segment at the 5'-end (denote as recognition probe). The other, serving as a signal probe, contains a sequence for Ag NCs templated synthesis and a link sequence complementary to the arm segment of the recognition probe. Recognizing and binding of the aptamer to cancer cells enforces the recognition probe to undergo a conformational alteration and then initiates hybridization between the arm segment of the recognition probe and the link sequence of the signal probe. The Ag NCs are then close to the guanine-rich DNA, leading to an enhanced fluorescence readout. As proof-of-concept, the CCRF-CEM cancer cell detection were performed by using the specific aptamer, sgc8c. It was demonstrated that this strategy could specially image the CCRF-CEM cells. Determination by flow cytometry allowed for detection of as low as 150 CCRF-CEM cells in 200 μL binding buffer. The general applicability of the strategy is also achieved in the successful detection of Ramos cells. These results implied that this strategy holds considerable potential for simple, sensitive, universal, and specific cancer cell detection with no required washing and separation steps.
Collapse
Affiliation(s)
- Jinjin Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, China 410082
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhao J, Zhu L, Guo C, Gao T, Zhu X, Li G. A new electrochemical method for the detection of cancer cells based on small molecule-linked DNA. Biosens Bioelectron 2013; 49:329-33. [DOI: 10.1016/j.bios.2013.05.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 12/11/2022]
|
47
|
Yan Y, Zhao D, Yuan T, Hu J, Zhang D, Cheng W, Zhang W, Ding S. A Simple and Highly Sensitive Electrochemical Biosensor for microRNA Detection Using Target-Assisted Isothermal Exponential Amplification Reaction. ELECTROANAL 2013. [DOI: 10.1002/elan.201300328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Yan M, Sun G, Liu F, Lu J, Yu J, Song X. An aptasensor for sensitive detection of human breast cancer cells by using porous GO/Au composites and porous PtFe alloy as effective sensing platform and signal amplification labels. Anal Chim Acta 2013; 798:33-9. [PMID: 24070481 DOI: 10.1016/j.aca.2013.08.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/21/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
A novel aptamer biosensor for cancer cell assay has been reported on the basis of ultrasensitive electrochemical detection. The assay uses the aptamer as a capture probe to recognize and bind the tumor marker on the surface of the cancer cells, forming an aptamer-based sandwich structure for MCF-7 cells detection. Functionalized nanoporous materials, porous graphene oxide/Au composites (GO/Au composites) and porous PtFe alloy have been introduced into the biosensor. Owing to the large surface area and versatile porous structure, the use of nanoporous materials can significantly improve the analysis performance of the biosensors by loading of large amounts of molecules and accelerating diffusion rate. Under the optimized experimental conditions, the proposed aptamer biosensor exhibited excellent analytical performance for MCF-7 cells determination, ranging from 100 to 5.0×10(7) cells mL(-1) with the detection limit of 38 cells mL(-1). The biosensor showed good selectivity, acceptable stability and reproducibility, and developed a highly sensitive and selective method for cancer cells detection.
Collapse
Affiliation(s)
- Mei Yan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | | | | | | | | | | |
Collapse
|
49
|
Xiong X, Zhou C, Wu C, Zhu G, Chen Z, Tan W. Responsive DNA-based hydrogels and their applications. Macromol Rapid Commun 2013; 34:1271-83. [PMID: 23857726 PMCID: PMC4470902 DOI: 10.1002/marc.201300411] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/17/2013] [Indexed: 11/06/2022]
Abstract
The term hydrogel describes a type of soft and wet material formed by cross-linked hydrophilic polymers. The distinct feature of hydrogels is their ability to absorb a large amount of water and swell. The properties of a hydrogel are usually determined by the chemical properties of their constituent polymer(s). However, a group of hydrogels, called "smart hydrogels," changes properties in response to environmental changes or external stimuli. Recently, DNA or DNA-inspired responsive hydrogels have attracted considerable attention in construction of smart hydrogels because of the intrinsic advantages of DNA. As a biological polymer, DNA is hydrophilic, biocompatible, and highly programmable by Watson-Crick base pairing. DNA can form a hydrogel by itself under certain conditions, and it can also be incorporated into synthetic polymers to form DNA-hybrid hydrogels. Functional DNAs, such as aptamers and DNAzymes, provide additional molecular recognition capabilities and versatility. In this Review, DNA-based hydrogels are discussed in terms of their stimulus response, as well as their applications.
Collapse
Affiliation(s)
- Xiangling Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio- Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Cuisong Zhou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio- Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Cuichen Wu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio- Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Guizhi Zhu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio- Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | | | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio- Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| |
Collapse
|
50
|
Zhang Y, Yang D, Weng L, Wang L. Early lung cancer diagnosis by biosensors. Int J Mol Sci 2013; 14:15479-509. [PMID: 23892596 PMCID: PMC3759869 DOI: 10.3390/ijms140815479] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/29/2013] [Accepted: 07/04/2013] [Indexed: 12/20/2022] Open
Abstract
Lung cancer causes an extreme threat to human health, and the mortality rate due to lung cancer has not decreased during the last decade. Prognosis or early diagnosis could help reduce the mortality rate. If microRNA and tumor-associated antigens (TAAs), as well as the corresponding autoantibodies, can be detected prior to clinical diagnosis, such high sensitivity of biosensors makes the early diagnosis and prognosis of cancer realizable. This review provides an overview of tumor-associated biomarker identifying methods and the biosensor technology available today. Laboratorial researches utilizing biosensors for early lung cancer diagnosis will be highlighted.
Collapse
Affiliation(s)
- Yuqian Zhang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; E-Mails: (Y.Z.); (D.Y.)
| | - Dongliang Yang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; E-Mails: (Y.Z.); (D.Y.)
| | - Lixing Weng
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; E-Mails: (Y.Z.); (D.Y.)
| |
Collapse
|